import os import math import torch from types import MethodType from typing import TYPE_CHECKING, Literal, Optional, Tuple from transformers import ( AutoConfig, AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, PretrainedConfig, PreTrainedModel, PreTrainedTokenizerBase ) from transformers.models.llama import modeling_llama as LlamaModule from transformers.utils.versions import require_version from peft import PeftModel from trl import AutoModelForCausalLMWithValueHead try: from transformers.integrations import is_deepspeed_zero3_enabled except ImportError: # https://github.com/huggingface/transformers/releases/tag/v4.33.1 from transformers.deepspeed import is_deepspeed_zero3_enabled from llmtuner.extras.logging import reset_logging, get_logger from llmtuner.extras.misc import count_parameters, infer_optim_dtype from llmtuner.extras.patches import llama_patch as LlamaPatches from llmtuner.hparams import FinetuningArguments from llmtuner.tuner.core.adapter import init_adapter, load_valuehead_params from llmtuner.tuner.core.utils import prepare_model_for_training if TYPE_CHECKING: from transformers import PreTrainedTokenizer from llmtuner.hparams import ModelArguments logger = get_logger(__name__) require_version("transformers>=4.31.0,<4.35.0", "To fix: pip install \"transformers>=4.31.0,<4.35.0\"") require_version("datasets>=2.12.0", "To fix: pip install datasets>=2.12.0") require_version("accelerate>=0.21.0", "To fix: pip install accelerate>=0.21.0") require_version("peft>=0.6.0", "To fix: pip install peft>=0.6.0") require_version("trl==0.7.2", "To fix: pip install trl==0.7.2") def load_model_and_tokenizer( model_args: "ModelArguments", finetuning_args: "FinetuningArguments", is_trainable: Optional[bool] = False, stage: Optional[Literal["pt", "sft", "rm", "ppo"]] = "sft" ) -> Tuple[PreTrainedModel, "PreTrainedTokenizer"]: r""" Loads pretrained model and tokenizer. Support both training and inference. """ config_kwargs = { "trust_remote_code": True, "cache_dir": model_args.cache_dir, "revision": model_args.model_revision, "token": model_args.hf_hub_token } tokenizer = AutoTokenizer.from_pretrained( model_args.model_name_or_path, use_fast=model_args.use_fast_tokenizer, split_special_tokens=model_args.split_special_tokens, padding_side="right", # training with left-padded tensors in fp16 precision may cause overflow **config_kwargs ) if finetuning_args.finetuning_type != "lora" and model_args.checkpoint_dir is not None: model_to_load = model_args.checkpoint_dir[0] else: model_to_load = model_args.model_name_or_path config = AutoConfig.from_pretrained(model_to_load, **config_kwargs) # Fix tokenizer (for ChatGLM2 and ChatGLM3) if getattr(config, "model_type", None) == "chatglm": tokenizer._pad = MethodType(PreTrainedTokenizerBase._pad, tokenizer) # Set model dtype if model_args.compute_dtype is not None: # for training setattr(config, "torch_dtype", model_args.compute_dtype) else: # for evaluation, priority: bf16 > fp16 > fp32 model_args.compute_dtype = infer_optim_dtype(model_dtype=getattr(config, "torch_dtype", None)) # Fix config (for Qwen) if getattr(config, "model_type", None) == "qwen": for dtype_name, dtype in [("fp16", torch.float16), ("bf16", torch.bfloat16), ("fp32", torch.float32)]: setattr(config, dtype_name, getattr(config, "torch_dtype", None) == dtype) # Set RoPE scaling if model_args.rope_scaling is not None: if not hasattr(config, "rope_scaling"): logger.warning("Current model does not support RoPE scaling.") else: if is_trainable: if model_args.rope_scaling == "dynamic": logger.warning( "Dynamic NTK may not work well with fine-tuning. " "See: https://github.com/huggingface/transformers/pull/24653" ) current_max_length = getattr(config, "max_position_embeddings", None) if current_max_length and model_args.model_max_length > current_max_length: scaling_factor = float(math.ceil(model_args.model_max_length / current_max_length)) else: logger.warning("Input length is smaller than max length. Consider increase input length.") scaling_factor = 1.0 else: scaling_factor = 2.0 setattr(config, "rope_scaling", {"type": model_args.rope_scaling, "factor": scaling_factor}) logger.info("Using {} scaling strategy and setting scaling factor to {}".format( model_args.rope_scaling, scaling_factor )) # Set FlashAttention-2 if model_args.flash_attn: if getattr(config, "model_type", None) == "llama": LlamaModule.LlamaAttention = LlamaPatches.LlamaFlashAttention2 LlamaModule.LlamaModel._prepare_decoder_attention_mask = LlamaPatches._prepare_decoder_attention_mask logger.info("Using FlashAttention-2 for faster training and inference.") elif getattr(config, "model_type", None) in ["qwen", "Yi"]: logger.info("Current model automatically enables FlashAttention if installed.") else: logger.warning("Current model does not support FlashAttention-2.") elif is_trainable and model_args.shift_attn and getattr(config, "model_type", None) == "llama": LlamaModule.LlamaAttention = LlamaPatches.LlamaShiftShortAttention logger.warning("Using `--flash_attn` for faster training in large context length.") # Set shift short attention (S^2-Attn) if is_trainable and model_args.shift_attn: if getattr(config, "model_type", None) == "llama": setattr(config, "group_size_ratio", 0.25) logger.info("Using shift short attention with group_size_ratio=1/4.") else: logger.warning("Current model does not support shift short attention.") # Quantization configurations (using bitsandbytes library). if model_args.quantization_bit is not None: if is_deepspeed_zero3_enabled(): raise ValueError("DeepSpeed ZeRO-3 is incompatible with quantization.") if model_args.quantization_bit == 8: require_version("bitsandbytes>=0.37.0", "To fix: pip install bitsandbytes>=0.37.0") config_kwargs["load_in_8bit"] = True config_kwargs["quantization_config"] = BitsAndBytesConfig(load_in_8bit=True) if model_args.quantization_bit == 4: require_version("bitsandbytes>=0.39.0", "To fix: pip install bitsandbytes>=0.39.0") config_kwargs["load_in_4bit"] = True config_kwargs["quantization_config"] = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=model_args.compute_dtype, bnb_4bit_use_double_quant=model_args.double_quantization, bnb_4bit_quant_type=model_args.quantization_type ) config_kwargs["device_map"] = {"": int(os.environ.get("LOCAL_RANK", "0"))} if is_trainable else "auto" logger.info("Quantizing model to {} bit.".format(model_args.quantization_bit)) # Load and prepare pre-trained models (without valuehead). model = AutoModelForCausalLM.from_pretrained( model_to_load, config=config, torch_dtype=model_args.compute_dtype, low_cpu_mem_usage=(not is_deepspeed_zero3_enabled()), **config_kwargs ) # Disable custom generate method (for Qwen and Baichuan2) if isinstance(model, PreTrainedModel) and "GenerationMixin" not in str(model.generate.__func__): model.generate = MethodType(PreTrainedModel.generate, model) # Fix LM head (for ChatGLM2 and ChatGLM3) if getattr(config, "model_type", None) == "chatglm": setattr(model, "lm_head", model.transformer.output_layer) setattr(model, "_keys_to_ignore_on_save", ["lm_head.weight"]) # Register auto class to save the custom code files. if isinstance(config, PretrainedConfig) and "AutoConfig" in getattr(config, "auto_map", {}): config.__class__.register_for_auto_class() if isinstance(model, PreTrainedModel) and "AutoModelForCausalLM" in getattr(config, "auto_map", {}): model.__class__.register_for_auto_class() if isinstance(tokenizer, PreTrainedTokenizerBase) and "AutoTokenizer" in tokenizer.init_kwargs.get("auto_map", {}): tokenizer.__class__.register_for_auto_class() # Initialize adapters model = prepare_model_for_training(model=model, finetuning_args=finetuning_args) if is_trainable else model model = init_adapter(model, model_args, finetuning_args, is_trainable) model = model.train() if is_trainable else model.eval() # Prepare model with valuehead for RLHF if stage == "rm" or stage == "ppo": model: "AutoModelForCausalLMWithValueHead" = AutoModelForCausalLMWithValueHead.from_pretrained(model) reset_logging() if stage == "rm" and model_args.checkpoint_dir is not None: # load valuehead weights to evaluate reward model logger.warning("Only the last checkpoint containing valuehead will be loaded.") if load_valuehead_params(model, model_args): model.v_head.load_state_dict({ "summary.weight": getattr(model, "reward_head_weight"), "summary.bias": getattr(model, "reward_head_bias") }) if stage == "ppo": # load reward model logger.info("Load reward model from {}".format(model_args.reward_model)) if isinstance(model.pretrained_model, PeftModel): model.pretrained_model.load_adapter(model_args.reward_model, "reward") for name, param in model.named_parameters(): # https://github.com/huggingface/peft/issues/1090 if "default" in name: param.data = param.data.to(torch.float32) # trainable params should in fp32 assert load_valuehead_params(model, model_args), "Reward model is not correctly loaded." # Prepare model for inference if not is_trainable: model.requires_grad_(False) # fix all model params model = model.to(model_args.compute_dtype) if model_args.quantization_bit is None else model trainable_params, all_param = count_parameters(model) logger.info("trainable params: {:d} || all params: {:d} || trainable%: {:.4f}".format( trainable_params, all_param, 100 * trainable_params / all_param )) if not is_trainable: logger.info("This IS expected that the trainable params is 0 if you are using model for inference only.") return model, tokenizer