import os import torch from typing import TYPE_CHECKING from transformers.utils import cached_file from transformers.trainer import WEIGHTS_NAME, SAFE_WEIGHTS_NAME from peft import ( PeftModel, TaskType, LoraConfig, get_peft_model ) from llmtuner.extras.logging import get_logger from llmtuner.tuner.core.utils import find_all_linear_modules if TYPE_CHECKING: from transformers.modeling_utils import PreTrainedModel from llmtuner.hparams import ModelArguments, FinetuningArguments logger = get_logger(__name__) def init_adapter( model: "PreTrainedModel", model_args: "ModelArguments", finetuning_args: "FinetuningArguments", is_trainable: bool ) -> "PreTrainedModel": r""" Initializes the adapters. Support full-parameter, freeze and LoRA training. Note that the trainable parameters must be cast to float32. """ if finetuning_args.finetuning_type == "none" and is_trainable: raise ValueError("You cannot use finetuning_type=none while training.") if finetuning_args.finetuning_type == "full" and is_trainable: logger.info("Fine-tuning method: Full") model = model.float() if finetuning_args.finetuning_type == "freeze": logger.info("Fine-tuning method: Freeze") num_layers = getattr(model.config, "num_layers") if finetuning_args.num_layer_trainable > 0: # fine-tuning the last n layers if num_layer_trainable > 0 trainable_layer_ids = [num_layers - k - 1 for k in range(finetuning_args.num_layer_trainable)] else: # fine-tuning the first n layers if num_layer_trainable < 0 trainable_layer_ids = [k for k in range(-finetuning_args.num_layer_trainable)] trainable_layers = ["{:d}.{}".format(idx, finetuning_args.name_module_trainable) for idx in trainable_layer_ids] for name, param in model.named_parameters(): if not any(trainable_layer in name for trainable_layer in trainable_layers): param.requires_grad_(False) else: param.data = param.data.to(torch.float32) if finetuning_args.finetuning_type == "lora": logger.info("Fine-tuning method: LoRA") latest_checkpoint = None if model_args.checkpoint_dir is not None: if is_trainable and finetuning_args.resume_lora_training: # continually fine-tuning checkpoints_to_merge, latest_checkpoint = model_args.checkpoint_dir[:-1], model_args.checkpoint_dir[-1] else: checkpoints_to_merge = model_args.checkpoint_dir for checkpoint in checkpoints_to_merge: model = PeftModel.from_pretrained(model, checkpoint) model = model.merge_and_unload() if len(checkpoints_to_merge) > 0: logger.info("Merged {} model checkpoint(s).".format(len(checkpoints_to_merge))) if latest_checkpoint is not None: # resume lora training or quantized inference model = PeftModel.from_pretrained(model, latest_checkpoint, is_trainable=is_trainable) if is_trainable and latest_checkpoint is None: # create new lora weights while training if len(finetuning_args.lora_target) == 1 and finetuning_args.lora_target[0] == "all": target_modules = find_all_linear_modules(model, model_args.quantization_bit) else: target_modules = finetuning_args.lora_target lora_config = LoraConfig( task_type=TaskType.CAUSAL_LM, inference_mode=False, r=finetuning_args.lora_rank, lora_alpha=finetuning_args.lora_alpha, lora_dropout=finetuning_args.lora_dropout, target_modules=target_modules, modules_to_save=finetuning_args.additional_target ) model = get_peft_model(model, lora_config) if model_args.checkpoint_dir is not None: logger.info("Loaded fine-tuned model from checkpoint(s): {}".format(",".join(model_args.checkpoint_dir))) return model def load_valuehead_params( model: "PreTrainedModel", model_args: "ModelArguments" ) -> bool: kwargs = { "path_or_repo_id": model_args.reward_model, "cache_dir": model_args.cache_dir, "token": model_args.hf_hub_token, "revision": model_args.model_revision } try: vhead_file = cached_file(filename=WEIGHTS_NAME, **kwargs) except: try: vhead_file = cached_file(filename=SAFE_WEIGHTS_NAME, **kwargs) except: logger.warning("Provided path ({}) does not contain valuehead weights.".format(model_args.reward_model)) return False vhead_params = torch.load(vhead_file, map_location="cpu") model.register_buffer("reward_head_weight", vhead_params["v_head.summary.weight"], persistent=False) model.register_buffer("reward_head_bias", vhead_params["v_head.summary.bias"], persistent=False) model.register_buffer("default_head_weight", torch.zeros_like(vhead_params["v_head.summary.weight"]), persistent=False) model.register_buffer("default_head_bias", torch.zeros_like(vhead_params["v_head.summary.bias"]), persistent=False) return True