import math from typing import TYPE_CHECKING from ...extras.logging import get_logger if TYPE_CHECKING: from transformers import PretrainedConfig from ...hparams import ModelArguments logger = get_logger(__name__) def configure_rope(config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool) -> None: if model_args.rope_scaling is None: return if not hasattr(config, "rope_scaling"): logger.warning("Current model does not support RoPE scaling.") return if is_trainable: if model_args.rope_scaling == "dynamic": logger.warning( "Dynamic NTK scaling may not work well with fine-tuning. " "See: https://github.com/huggingface/transformers/pull/24653" ) current_max_length = getattr(config, "max_position_embeddings", None) if current_max_length and model_args.model_max_length > current_max_length: logger.info( "Enlarge max model length from {} to {}.".format(current_max_length, model_args.model_max_length) ) setattr(config, "max_position_embeddings", model_args.model_max_length) scaling_factor = float(math.ceil(model_args.model_max_length / current_max_length)) else: logger.warning("Input length is smaller than max length. Consider increase input length.") scaling_factor = 1.0 else: scaling_factor = 2.0 setattr(config, "rope_scaling", {"type": model_args.rope_scaling, "factor": scaling_factor}) logger.info( "Using {} scaling strategy and setting scaling factor to {}".format(model_args.rope_scaling, scaling_factor) )