# Copyright 2024 imoneoi and the LlamaFactory team. # # This code is inspired by the imoneoi's OpenChat library. # https://github.com/imoneoi/openchat/blob/3.6.0/ochat/training_deepspeed/train.py # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from typing import Literal import fire import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import DataCollatorForLanguageModeling from llamafactory.data import get_dataset, get_template_and_fix_tokenizer, MultiModalDataCollatorForSeq2Seq from llamafactory.extras.constants import IGNORE_INDEX from llamafactory.hparams import get_train_args from llamafactory.model import load_tokenizer BASE_LR = 3e-4 # 1.5e-4 for 30B-70B models BASE_BS = 4_000_000 # from llama paper def calculate_lr( model_name_or_path: str, batch_size: int, # total batch size, namely (batch size * gradient accumulation * world size) stage: Literal["pt", "sft"] = "sft", dataset: str = "alpaca_en_demo", dataset_dir: str = "data", template: str = "default", cutoff_len: int = 1024, # i.e. maximum input length during training is_mistral_or_gemma: bool = False, # mistral and gemma models opt for a smaller learning rate, packing: bool = False, ): r""" Calculates the optimal learning rate for 7B/13B models using LLaMA's hyper-parameters. Usage: python cal_lr.py --model_name_or_path path_to_model --dataset alpaca_en_demo --cutoff_len 1024 --batch_size 16 """ model_args, data_args, training_args, _, _ = get_train_args( dict( stage=stage, model_name_or_path=model_name_or_path, dataset=dataset, dataset_dir=dataset_dir, template=template, cutoff_len=cutoff_len, packing=packing, output_dir="dummy_dir", overwrite_cache=True, do_train=True, ) ) tokenizer_module = load_tokenizer(model_args) tokenizer = tokenizer_module["tokenizer"] template = get_template_and_fix_tokenizer(tokenizer, data_args) trainset = get_dataset(template, model_args, data_args, training_args, stage, **tokenizer_module)["train_dataset"] if stage == "pt": data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False) elif stage == "sft": data_collator = MultiModalDataCollatorForSeq2Seq(template=template, tokenizer=tokenizer, label_pad_token_id=IGNORE_INDEX) else: raise NotImplementedError(f"Stage does not supported: {stage}.") dataloader = DataLoader(trainset, batch_size, shuffle=False, collate_fn=data_collator, pin_memory=True) valid_tokens, total_tokens = 0, 0 for batch in tqdm(dataloader): valid_tokens += torch.sum(batch["labels"] != IGNORE_INDEX).item() total_tokens += torch.numel(batch["labels"]) valid_ratio = valid_tokens / total_tokens token_batch_size = cutoff_len * batch_size * valid_ratio lr = BASE_LR * math.sqrt(token_batch_size / BASE_BS) # lr ~ sqrt(batch_size) lr = lr / 6.0 if is_mistral_or_gemma else lr print( "Optimal learning rate is {:.2e} for valid ratio% {:.2f} and effective token batch size {:.2f}".format( lr, valid_ratio * 100, token_batch_size ) ) if __name__ == "__main__": fire.Fire(calculate_lr)