# Copyright 2024 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from typing import Sequence import torch from peft import LoraModel, PeftModel from transformers import AutoModelForCausalLM from trl import AutoModelForCausalLMWithValueHead from llamafactory.extras.misc import get_current_device from llamafactory.hparams import get_infer_args, get_train_args from llamafactory.model import load_model, load_tokenizer TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-Llama-3") TINY_LLAMA_ADAPTER = os.environ.get("TINY_LLAMA_ADAPTER", "llamafactory/tiny-random-Llama-3-lora") TINY_LLAMA_VALUEHEAD = os.environ.get("TINY_LLAMA_VALUEHEAD", "llamafactory/tiny-random-Llama-3-valuehead") TRAIN_ARGS = { "model_name_or_path": TINY_LLAMA, "stage": "sft", "do_train": True, "finetuning_type": "lora", "dataset": "llamafactory/tiny-supervised-dataset", "dataset_dir": "ONLINE", "template": "llama3", "cutoff_len": 1024, "overwrite_cache": True, "output_dir": "dummy_dir", "overwrite_output_dir": True, "fp16": True, } INFER_ARGS = { "model_name_or_path": TINY_LLAMA, "adapter_name_or_path": TINY_LLAMA_ADAPTER, "finetuning_type": "lora", "template": "llama3", "infer_dtype": "float16", } def load_reference_model() -> "torch.nn.Module": model = AutoModelForCausalLM.from_pretrained(TINY_LLAMA) return PeftModel.from_pretrained(model, TINY_LLAMA_ADAPTER) def compare_model(model_a: "torch.nn.Module", model_b: "torch.nn.Module", diff_keys: Sequence[str] = []): state_dict_a = model_a.state_dict() state_dict_b = model_b.state_dict() assert set(state_dict_a.keys()) == set(state_dict_b.keys()) for name in state_dict_a.keys(): if any(key in name for key in diff_keys): assert torch.allclose(state_dict_a[name], state_dict_b[name]) is False else: assert torch.allclose(state_dict_a[name], state_dict_b[name]) is True def test_lora_train_qv_modules(): model_args, _, _, finetuning_args, _ = get_train_args({"lora_target": "q_proj,v_proj", **TRAIN_ARGS}) tokenizer_module = load_tokenizer(model_args) model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True) linear_modules = set() for name, param in model.named_parameters(): if any(module in name for module in ["lora_A", "lora_B"]): linear_modules.add(name.split(".lora_", maxsplit=1)[0].split(".")[-1]) assert param.requires_grad is True assert param.dtype == torch.float32 else: assert param.requires_grad is False assert param.dtype == torch.float16 assert linear_modules == {"q_proj", "v_proj"} def test_lora_train_all_modules(): model_args, _, _, finetuning_args, _ = get_train_args({"lora_target": "all", **TRAIN_ARGS}) tokenizer_module = load_tokenizer(model_args) model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True) linear_modules = set() for name, param in model.named_parameters(): if any(module in name for module in ["lora_A", "lora_B"]): linear_modules.add(name.split(".lora_", maxsplit=1)[0].split(".")[-1]) assert param.requires_grad is True assert param.dtype == torch.float32 else: assert param.requires_grad is False assert param.dtype == torch.float16 assert linear_modules == {"q_proj", "k_proj", "v_proj", "o_proj", "up_proj", "gate_proj", "down_proj"} def test_lora_train_extra_modules(): model_args, _, _, finetuning_args, _ = get_train_args( {"lora_target": "all", "additional_target": "embed_tokens,lm_head", **TRAIN_ARGS} ) tokenizer_module = load_tokenizer(model_args) model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True) extra_modules = set() for name, param in model.named_parameters(): if any(module in name for module in ["lora_A", "lora_B"]): assert param.requires_grad is True assert param.dtype == torch.float32 elif "modules_to_save" in name: extra_modules.add(name.split(".modules_to_save", maxsplit=1)[0].split(".")[-1]) assert param.requires_grad is True assert param.dtype == torch.float32 else: assert param.requires_grad is False assert param.dtype == torch.float16 assert extra_modules == {"embed_tokens", "lm_head"} def test_lora_train_old_adapters(): model_args, _, _, finetuning_args, _ = get_train_args( {"adapter_name_or_path": TINY_LLAMA_ADAPTER, "create_new_adapter": False, **TRAIN_ARGS} ) tokenizer_module = load_tokenizer(model_args) model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True) base_model = AutoModelForCausalLM.from_pretrained( TINY_LLAMA, torch_dtype=torch.float16, device_map=get_current_device() ) ref_model = PeftModel.from_pretrained(base_model, TINY_LLAMA_ADAPTER, is_trainable=True) for param in filter(lambda p: p.requires_grad, ref_model.parameters()): param.data = param.data.to(torch.float32) compare_model(model, ref_model) def test_lora_train_new_adapters(): model_args, _, _, finetuning_args, _ = get_train_args( {"adapter_name_or_path": TINY_LLAMA_ADAPTER, "create_new_adapter": True, **TRAIN_ARGS} ) tokenizer_module = load_tokenizer(model_args) model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True) base_model = AutoModelForCausalLM.from_pretrained( TINY_LLAMA, torch_dtype=torch.float16, device_map=get_current_device() ) ref_model = PeftModel.from_pretrained(base_model, TINY_LLAMA_ADAPTER, is_trainable=True) for param in filter(lambda p: p.requires_grad, ref_model.parameters()): param.data = param.data.to(torch.float32) compare_model( model, ref_model, diff_keys=["q_proj", "k_proj", "v_proj", "o_proj", "up_proj", "gate_proj", "down_proj"] ) def test_lora_train_valuehead(): model_args, _, finetuning_args, _ = get_infer_args(INFER_ARGS) tokenizer_module = load_tokenizer(model_args) model = load_model( tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True, add_valuehead=True ) ref_model: "AutoModelForCausalLMWithValueHead" = AutoModelForCausalLMWithValueHead.from_pretrained( TINY_LLAMA_VALUEHEAD, torch_dtype=torch.float16, device_map=get_current_device() ) state_dict = model.state_dict() ref_state_dict = ref_model.state_dict() assert torch.allclose(state_dict["v_head.summary.weight"], ref_state_dict["v_head.summary.weight"]) assert torch.allclose(state_dict["v_head.summary.bias"], ref_state_dict["v_head.summary.bias"]) def test_lora_inference(): model_args, _, finetuning_args, _ = get_infer_args(INFER_ARGS) tokenizer_module = load_tokenizer(model_args) model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=False) base_model = AutoModelForCausalLM.from_pretrained( TINY_LLAMA, torch_dtype=torch.float16, device_map=get_current_device() ) ref_model: "LoraModel" = PeftModel.from_pretrained(base_model, TINY_LLAMA_ADAPTER) ref_model = ref_model.merge_and_unload() compare_model(model, ref_model)