from typing import TYPE_CHECKING from ...extras.logging import get_logger from ...extras.packages import is_flash_attn2_available, is_sdpa_available if TYPE_CHECKING: from transformers import PretrainedConfig from ...hparams import ModelArguments logger = get_logger(__name__) def configure_attn_implementation(config: "PretrainedConfig", model_args: "ModelArguments") -> None: if model_args.flash_attn == "auto": return elif model_args.flash_attn == "off": requested_attn_implementation = "eager" elif model_args.flash_attn == "sdpa": if not is_sdpa_available(): logger.warning("torch>=2.1.1 is required for SDPA attention.") return requested_attn_implementation = "sdpa" elif model_args.flash_attn == "fa2": if not is_flash_attn2_available(): logger.warning("FlashAttention-2 is not installed.") return requested_attn_implementation = "flash_attention_2" else: raise NotImplementedError("Unknown attention type: {}".format(model_args.flash_attn)) if getattr(config, "model_type", None) == "internlm2": # special case for custom models setattr(config, "attn_implementation", requested_attn_implementation) else: setattr(config, "_attn_implementation", requested_attn_implementation) def print_attn_implementation(config: "PretrainedConfig") -> None: if getattr(config, "model_type", None) == "internlm2": # special case for custom models attn_implementation = getattr(config, "attn_implementation", None) else: attn_implementation = getattr(config, "_attn_implementation", None) if attn_implementation == "flash_attention_2": logger.info("Using FlashAttention-2 for faster training and inference.") elif attn_implementation == "sdpa": logger.info("Using torch SDPA for faster training and inference.") else: logger.info("Using vanilla attention implementation.")