# coding=utf-8 # Implements user interface in browser for LLaMA fine-tuned with PEFT. # Usage: python web_demo.py --checkpoint_dir path_to_checkpoint import torch import mdtex2html import gradio as gr from utils import ModelArguments, auto_configure_device_map, load_pretrained from transformers import HfArgumentParser parser = HfArgumentParser(ModelArguments) model_args, = parser.parse_args_into_dataclasses() model, tokenizer = load_pretrained(model_args) if torch.cuda.device_count() > 1: from accelerate import dispatch_model device_map = auto_configure_device_map(torch.cuda.device_count()) model = dispatch_model(model, device_map) else: model = model.cuda() model.eval() """Override Chatbot.postprocess""" def postprocess(self, y): if y is None: return [] for i, (message, response) in enumerate(y): y[i] = ( None if message is None else mdtex2html.convert((message)), None if response is None else mdtex2html.convert(response), ) return y gr.Chatbot.postprocess = postprocess def parse_text(text): # copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT lines = text.split("\n") lines = [line for line in lines if line != ""] count = 0 for i, line in enumerate(lines): if "```" in line: count += 1 items = line.split('`') if count % 2 == 1: lines[i] = f'
'
            else:
                lines[i] = f'
' else: if i > 0: if count % 2 == 1: line = line.replace("`", "\`") line = line.replace("<", "<") line = line.replace(">", ">") line = line.replace(" ", " ") line = line.replace("*", "*") line = line.replace("_", "_") line = line.replace("-", "-") line = line.replace(".", ".") line = line.replace("!", "!") line = line.replace("(", "(") line = line.replace(")", ")") line = line.replace("$", "$") lines[i] = "
"+line text = "".join(lines) return text def predict(input, chatbot, max_length, top_p, temperature, history): chatbot.append((parse_text(input), "")) inputs = tokenizer([input], return_tensors="pt") inputs = inputs.to(model.device) gen_kwargs = { "do_sample": True, "top_p": top_p, "temperature": temperature, "num_beams": 1, "max_length": max_length, "repetition_penalty": 1.0 } with torch.no_grad(): generation_output = model.generate(**inputs, **gen_kwargs) outputs = generation_output.tolist()[0][len(inputs["input_ids"][0]):] response = tokenizer.decode(outputs, skip_special_tokens=True) history = history + [(input, response)] chatbot[-1] = (parse_text(input), parse_text(response)) yield chatbot, history def reset_user_input(): return gr.update(value='') def reset_state(): return [], [] with gr.Blocks() as demo: gr.HTML("""

ChatGLM-Efficient-Tuning

""") chatbot = gr.Chatbot() with gr.Row(): with gr.Column(scale=4): with gr.Column(scale=12): user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10).style( container=False) with gr.Column(min_width=32, scale=1): submitBtn = gr.Button("Submit", variant="primary") with gr.Column(scale=1): emptyBtn = gr.Button("Clear History") max_length = gr.Slider(0, 4096, value=2048, step=1.0, label="Maximum length", interactive=True) top_p = gr.Slider(0, 1, value=0.7, step=0.01, label="Top P", interactive=True) temperature = gr.Slider(0, 1, value=0.95, step=0.01, label="Temperature", interactive=True) history = gr.State([]) submitBtn.click(predict, [user_input, chatbot, max_length, top_p, temperature, history], [chatbot, history], show_progress=True) submitBtn.click(reset_user_input, [], [user_input]) emptyBtn.click(reset_state, outputs=[chatbot, history], show_progress=True) demo.queue().launch(server_name="0.0.0.0", share=False, inbrowser=True)