import os import json import gradio as gr from typing import TYPE_CHECKING, Any, Dict from datetime import datetime from llmtuner.extras.packages import is_matplotlib_available from llmtuner.extras.ploting import smooth from llmtuner.webui.common import get_save_dir if TYPE_CHECKING: from llmtuner.extras.callbacks import LogCallback if is_matplotlib_available(): import matplotlib.figure import matplotlib.pyplot as plt def update_process_bar(callback: "LogCallback") -> Dict[str, Any]: if not callback.max_steps: return gr.update(visible=False) percentage = round(100 * callback.cur_steps / callback.max_steps, 0) if callback.max_steps != 0 else 100.0 label = "Running {:d}/{:d}: {} < {}".format( callback.cur_steps, callback.max_steps, callback.elapsed_time, callback.remaining_time ) return gr.update(label=label, value=percentage, visible=True) def get_time() -> str: return datetime.now().strftime('%Y-%m-%d-%H-%M-%S') def can_quantize(finetuning_type: str) -> Dict[str, Any]: if finetuning_type != "lora": return gr.update(value="None", interactive=False) else: return gr.update(interactive=True) def gen_cmd(args: Dict[str, Any]) -> str: args.pop("disable_tqdm", None) args["plot_loss"] = args.get("do_train", None) cuda_visible_devices = os.environ.get('CUDA_VISIBLE_DEVICES') or "0" cmd_lines = [f"CUDA_VISIBLE_DEVICES={cuda_visible_devices} python src/train_bash.py "] for k, v in args.items(): if v is not None and v != "": cmd_lines.append(" --{} {} ".format(k, str(v))) cmd_text = "\\\n".join(cmd_lines) cmd_text = "```bash\n{}\n```".format(cmd_text) return cmd_text def get_eval_results(path: os.PathLike) -> str: with open(path, "r", encoding="utf-8") as f: result = json.dumps(json.load(f), indent=4) return "```json\n{}\n```\n".format(result) def gen_plot(base_model: str, finetuning_type: str, output_dir: str) -> "matplotlib.figure.Figure": if not base_model: return log_file = get_save_dir(base_model, finetuning_type, output_dir, "trainer_log.jsonl") if not os.path.isfile(log_file): return plt.close("all") fig = plt.figure() ax = fig.add_subplot(111) steps, losses = [], [] with open(log_file, "r", encoding="utf-8") as f: for line in f: log_info = json.loads(line) if log_info.get("loss", None): steps.append(log_info["current_steps"]) losses.append(log_info["loss"]) if len(losses) == 0: return None ax.plot(steps, losses, alpha=0.4, label="original") ax.plot(steps, smooth(losses), label="smoothed") ax.legend() ax.set_xlabel("step") ax.set_ylabel("loss") return fig