import torch import inspect from typing import TYPE_CHECKING, Any, Dict, List, Optional, Set, Tuple from transformers.utils import cached_file from transformers.trainer import WEIGHTS_NAME, SAFE_WEIGHTS_NAME from llmtuner.extras.constants import LAYERNORM_NAMES from llmtuner.extras.logging import get_logger from llmtuner.hparams import ModelArguments, FinetuningArguments if TYPE_CHECKING: from transformers.modeling_utils import PreTrainedModel from transformers.tokenization_utils import PreTrainedTokenizer from llmtuner.hparams import DataArguments logger = get_logger(__name__) def dispatch_model(model: "PreTrainedModel") -> "PreTrainedModel": r""" Dispatches a pre-trained model to GPUs with balanced memory. Borrowed from: https://github.com/huggingface/transformers/blob/v4.31.0/src/transformers/modeling_utils.py#L2803 """ if getattr(model, "quantization_method", None): # already set on current device return model if torch.cuda.device_count() > 1 and getattr(model.config, "model_type", None) != "chatglm": from accelerate import dispatch_model from accelerate.utils import infer_auto_device_map, get_balanced_memory if model._no_split_modules is None: raise ValueError("The model class needs to implement the `_no_split_modules` attribute.") kwargs = {"dtype": model.dtype, "no_split_module_classes": model._no_split_modules} max_memory = get_balanced_memory(model, **kwargs) # Make sure tied weights are tied before creating the device map. model.tie_weights() device_map = infer_auto_device_map(model, max_memory=max_memory, **kwargs) return dispatch_model(model, device_map) else: return model.cuda() def find_all_linear_modules(model: "PreTrainedModel") -> List[str]: r""" Finds all available modules to apply lora. """ quantization_method = getattr(model, "quantization_method", None) if quantization_method is None: linear_cls = torch.nn.Linear elif quantization_method == "bitsandbytes": import bitsandbytes as bnb linear_cls = bnb.nn.Linear4bit if getattr(model, "is_loaded_in_4bit", False) else bnb.nn.Linear8bitLt else: raise ValueError("Finding linear modules for {} models is not supported.".format(quantization_method)) output_layer_names = ["lm_head"] if model.config.model_type == "chatglm": output_layer_names.append("output_layer") module_names = set() for name, module in model.named_modules(): if ( isinstance(module, linear_cls) and not any([output_layer in name for output_layer in output_layer_names]) ): module_names.add(name.split(".")[-1]) logger.info("Found linear modules: {}".format(",".join(module_names))) return list(module_names) def get_modelcard_args( model_args: "ModelArguments", data_args: "DataArguments", finetuning_args: "FinetuningArguments" ) -> Dict[str, Any]: return { "tasks": "text-generation", "license": "other", "finetuned_from": model_args.model_name_or_path, "dataset": [dataset.strip() for dataset in data_args.dataset.split(",")], "tags": ["llama-factory"] + (["lora"] if finetuning_args.finetuning_type == "lora" else []) } def load_valuehead_params( path_or_repo_id: str, model_args: "ModelArguments" ) -> Dict[str, torch.Tensor]: r""" Loads value head parameters from Hugging Face Hub or local disk. Returns: dict with keys `v_head.summary.weight` and `v_head.summary.bias`. """ kwargs = { "path_or_repo_id": path_or_repo_id, "cache_dir": model_args.cache_dir } if "token" in inspect.signature(cached_file).parameters: kwargs["token"] = model_args.hf_hub_token elif "use_auth_token" in inspect.signature(cached_file).parameters: # for transformers==4.31.0 kwargs["use_auth_token"] = model_args.hf_hub_token else: logger.warning("Ignore `hf_hub_token` since matched parameter is not found.") try: vhead_file = cached_file(filename=WEIGHTS_NAME, **kwargs) return torch.load(vhead_file, map_location="cpu") except Exception as err: logger.info("Failed to load {}: {}".format(WEIGHTS_NAME, str(err))) try: from safetensors import safe_open vhead_file = cached_file(filename=SAFE_WEIGHTS_NAME, **kwargs) with safe_open(vhead_file, framework="pt", device="cpu") as f: return { "v_head.summary.weight": f.get_tensor("v_head.summary.weight"), "v_head.summary.bias": f.get_tensor("v_head.summary.bias") } except Exception as err: logger.info("Failed to load {}: {}".format(SAFE_WEIGHTS_NAME, str(err))) logger.warning("Provided path ({}) does not contain valuehead weights.".format(path_or_repo_id)) return None def prepare_model_for_training( model: "PreTrainedModel", finetuning_args: "FinetuningArguments", output_layer_name: Optional[str] = "lm_head", use_gradient_checkpointing: Optional[bool] = True, layernorm_names: Optional[Set[str]] = LAYERNORM_NAMES ) -> "PreTrainedModel": r""" Includes: (1) cast the layernorm in fp32 (2) make output embedding layer require grads (3) upcast the lm_head to fp32 Inspired by: https://github.com/huggingface/peft/blob/v0.2.0/src/peft/utils/other.py#L33 """ if finetuning_args.upcast_layernorm: for name, param in model.named_parameters(): if param.ndim == 1 and any(ln_name in name for ln_name in layernorm_names): param.data = param.data.to(torch.float32) logger.info("Upcasting weights in layernorm in float32.") if use_gradient_checkpointing and getattr(model, "supports_gradient_checkpointing", False): if hasattr(model, "enable_input_require_grads"): model.enable_input_require_grads() else: def make_inputs_require_grad(module: torch.nn.Module, args: Tuple[torch.Tensor], output: torch.Tensor): output.requires_grad_(True) model.get_input_embeddings().register_forward_hook(make_inputs_require_grad) model.gradient_checkpointing_enable() model.config.use_cache = False # turn off when gradient checkpointing is enabled logger.info("Gradient checkpointing enabled.") if finetuning_args.finetuning_type != "full" and hasattr(model, output_layer_name): output_layer = getattr(model, output_layer_name) if isinstance(output_layer, torch.nn.Linear): def fp32_forward_pre_hook(module: torch.nn.Module, args: Tuple[torch.Tensor]): return args[0].to(output_layer.weight.dtype) def fp32_forward_post_hook(module: torch.nn.Module, args: Tuple[torch.Tensor], output: torch.Tensor): return output.to(torch.float32) output_layer.register_forward_pre_hook(fp32_forward_pre_hook) output_layer.register_forward_hook(fp32_forward_post_hook) return model def resize_embedding_layer(model: "PreTrainedModel", tokenizer: "PreTrainedTokenizer") -> None: r""" Resize token embeddings. """ if not isinstance(model.get_output_embeddings(), torch.nn.Linear): logger.warning("Current model does not support resizing token embeddings.") return current_embedding_size = model.get_input_embeddings().weight.size(0) if len(tokenizer) > current_embedding_size: model.resize_token_embeddings(len(tokenizer), pad_to_multiple_of=64) new_embedding_size = model.get_input_embeddings().weight.size(0) logger.info("Resized token embeddings from {} to {}.".format(current_embedding_size, new_embedding_size))