# Copyright 2024 OpenAccess AI Collective and the LlamaFactory team. # # This code is inspired by the OpenAccess AI Collective's axolotl library. # https://github.com/OpenAccess-AI-Collective/axolotl/blob/main/src/axolotl/monkeypatch/utils.py # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import TYPE_CHECKING, Any, Dict, Literal, Optional, Sequence import torch import torch.nn.functional as F from torch.nn.utils.rnn import pad_sequence from transformers import DataCollatorForSeq2Seq from ..extras.constants import IGNORE_INDEX, IMAGE_PLACEHOLDER from ..extras.packages import is_pillow_available if is_pillow_available(): from PIL import Image if TYPE_CHECKING: from transformers import ProcessorMixin from .template import Template def prepare_4d_attention_mask(attention_mask_with_indices: "torch.Tensor", dtype: "torch.dtype") -> "torch.Tensor": r""" Expands the attention mask with indices from (batch_size, seq_len) to (batch_size, 1, seq_len, seq_len), while handles packed sequences and transforms the mask to lower triangular form to prevent future peeking. e.g. ```python # input [[1, 1, 2, 2, 2, 0]] # output [ [ [ [o, x, x, x, x, x], [o, o, x, x, x, x], [x, x, o, x, x, x], [x, x, o, o, x, x], [x, x, o, o, o, x], [x, x, x, x, x, x], ] ] ] ``` where `o` equals to `0.0`, `x` equals to `min_dtype`. """ bsz, seq_len = attention_mask_with_indices.size() min_dtype = torch.finfo(dtype).min expanded_mask = attention_mask_with_indices[:, None, None, :].expand(bsz, 1, seq_len, seq_len) # Create a binary mask from the original mask where zeros remain zeros and all other values are set to one padding_mask = torch.where(expanded_mask != 0, 1, 0) # Create a block-diagonal mask. attention_mask_4d = torch.eq(expanded_mask, expanded_mask.transpose(-1, -2)).int() * padding_mask # Use the lower triangular mask to zero out the upper triangular part attention_mask_4d *= torch.tril(torch.ones((seq_len, seq_len), dtype=torch.long)) # Invert the attention mask. attention_mask_4d = torch.where(attention_mask_4d != 0, torch.tensor(0, dtype=dtype), min_dtype) return attention_mask_4d @dataclass class MultiModalDataCollatorForSeq2Seq(DataCollatorForSeq2Seq): r""" Data collator that supports VLMs. Features should contain input_ids, attention_mask, labels, and optionally contain images and videos. """ template: Optional["Template"] = None processor: Optional["ProcessorMixin"] = None def __post_init__(self): if self.template is None: raise ValueError("Template is required for MultiModalDataCollator.") def __call__(self, features: Sequence[Dict[str, Any]]) -> Dict[str, "torch.Tensor"]: batch_images, batch_videos, batch_imglens, batch_vidlens, batch_input_ids = [], [], [], [], [] for feature in features: images = feature.pop("images", None) or [] videos = feature.pop("videos", None) or [] batch_images.extend(images) batch_videos.extend(videos) batch_imglens.append(len(images)) batch_vidlens.append(len(videos)) batch_input_ids.append(feature["input_ids"]) if ( self.processor is not None and sum(batch_imglens) == 0 and sum(batch_vidlens) == 0 ): # avoid process hanging in zero3/fsdp case fake_messages = [{"role": "user", "content": IMAGE_PLACEHOLDER}] fake_images = [Image.new("RGB", (64, 64), (255, 255, 255))] fake_messages = self.template.mm_plugin.process_messages(fake_messages, fake_images, [], self.processor) fake_input_ids = self.tokenizer.encode(fake_messages[0]["content"], add_special_tokens=False) fake_input_ids, _ = self.template.mm_plugin.process_token_ids( fake_input_ids, None, fake_images, [], self.tokenizer, self.processor ) if self.tokenizer.padding_side == "right": features[0]["input_ids"] = features[0]["input_ids"] + fake_input_ids features[0]["attention_mask"] = features[0]["attention_mask"] + [0] * len(fake_input_ids) features[0]["labels"] = features[0]["labels"] + [IGNORE_INDEX] * len(fake_input_ids) else: features[0]["input_ids"] = fake_input_ids + features[0]["input_ids"] features[0]["attention_mask"] = [0] * len(fake_input_ids) + features[0]["attention_mask"] features[0]["labels"] = [IGNORE_INDEX] * len(fake_input_ids) + features[0]["labels"] batch_images = fake_images batch_imglens[0] = 1 batch_input_ids[0] = features[0]["input_ids"] mm_inputs = self.template.mm_plugin.get_mm_inputs( batch_images, batch_videos, batch_imglens, batch_vidlens, batch_input_ids, self.processor ) if "token_type_ids" in mm_inputs: token_type_ids = mm_inputs.pop("token_type_ids") for i, feature in enumerate(features): feature["token_type_ids"] = token_type_ids[i] features: Dict[str, "torch.Tensor"] = super().__call__(features) if self.model is not None and hasattr(self.model, "get_rope_index"): # for qwen2vl mrope features["position_ids"], features["rope_deltas"] = self.model.get_rope_index( input_ids=features["input_ids"], image_grid_thw=mm_inputs.get("image_grid_thw", None), video_grid_thw=mm_inputs.get("video_grid_thw", None), attention_mask=features["attention_mask"], ) if "cross_attention_mask" in mm_inputs: # for mllama inputs when pad_to_multiple_of is enabled cross_attention_mask = mm_inputs.pop("cross_attention_mask") seq_len = features["input_ids"].size(1) orig_len = cross_attention_mask.size(1) mm_inputs["cross_attention_mask"] = F.pad(cross_attention_mask, (0, 0, 0, 0, 0, seq_len - orig_len)) features.update(mm_inputs) if isinstance(features.get("pixel_values"), list): # for pixtral inputs features = features.data # use default_collate() instead of BatchEncoding.to() if "image_bound" in features: # for minicpmv inputs features["position_ids"] = [torch.arange(input_ids.size(0)).long() for input_ids in features["input_ids"]] features["position_ids"] = pad_sequence(features["position_ids"], batch_first=True, padding_value=0) new_features = {"data": features} new_features.update(features) features = new_features return features @dataclass class SFTDataCollatorWith4DAttentionMask(MultiModalDataCollatorForSeq2Seq): r""" Data collator for 4d attention mask. """ block_diag_attn: bool = False attn_implementation: Literal["eager", "sdpa", "flash_attention_2"] = "eager" compute_dtype: "torch.dtype" = torch.float32 def __call__(self, features: Sequence[Dict[str, Any]]) -> Dict[str, "torch.Tensor"]: features = super().__call__(features) if self.block_diag_attn and self.attn_implementation != "flash_attention_2": features["attention_mask"] = prepare_4d_attention_mask(features["attention_mask"], self.compute_dtype) for key, value in features.items(): # cast data dtype for paligemma if torch.is_tensor(value) and torch.is_floating_point(value): features[key] = value.to(self.compute_dtype) return features @dataclass class PairwiseDataCollatorWithPadding(MultiModalDataCollatorForSeq2Seq): r""" Data collator for pairwise data. """ def __call__(self, features: Sequence[Dict[str, Any]]) -> Dict[str, "torch.Tensor"]: r""" Pads batched data to the longest sequence in the batch. We generate 2 * n examples where the first n examples represent chosen examples and the last n examples represent rejected examples. """ concatenated_features = [] for key in ("chosen", "rejected"): for feature in features: target_feature = { "input_ids": feature[f"{key}_input_ids"], "attention_mask": feature[f"{key}_attention_mask"], "labels": feature[f"{key}_labels"], "images": feature["images"], "videos": feature["videos"], } concatenated_features.append(target_feature) return super().__call__(concatenated_features) @dataclass class KTODataCollatorWithPadding(MultiModalDataCollatorForSeq2Seq): r""" Data collator for KTO data. """ def __call__(self, features: Sequence[Dict[str, Any]]) -> Dict[str, "torch.Tensor"]: target_features = [] kl_features = [] kto_tags = [] for feature in features: target_feature = { "input_ids": feature["input_ids"], "attention_mask": feature["attention_mask"], "labels": feature["labels"], "images": feature["images"], "videos": feature["videos"], } kl_feature = { "input_ids": feature["kl_input_ids"], "attention_mask": feature["kl_attention_mask"], "labels": feature["kl_labels"], "images": feature["images"], "videos": feature["videos"], } target_features.append(target_feature) kl_features.append(kl_feature) kto_tags.append(feature["kto_tags"]) batch = super().__call__(target_features) kl_batch = super().__call__(kl_features) batch["kl_input_ids"] = kl_batch["input_ids"] batch["kl_attention_mask"] = kl_batch["attention_mask"] batch["kl_labels"] = kl_batch["labels"] if "token_type_ids" in kl_batch: batch["kl_token_type_ids"] = kl_batch["token_type_ids"] batch["kto_tags"] = torch.tensor(kto_tags) return batch