import torch from typing import TYPE_CHECKING from peft import PeftModel, TaskType, LoraConfig, get_peft_model from llmtuner.extras.logging import get_logger from llmtuner.model.utils import find_all_linear_modules if TYPE_CHECKING: from transformers.modeling_utils import PreTrainedModel from llmtuner.hparams import ModelArguments, FinetuningArguments logger = get_logger(__name__) def init_adapter( model: "PreTrainedModel", model_args: "ModelArguments", finetuning_args: "FinetuningArguments", is_trainable: bool ) -> "PreTrainedModel": r""" Initializes the adapters. Support full-parameter, freeze and LoRA training. Note that the trainable parameters must be cast to float32. """ if (not is_trainable) and model_args.checkpoint_dir is None: logger.info("Checkpoint is not found at evaluation, load the original model.") return model if finetuning_args.finetuning_type == "full" and is_trainable: logger.info("Fine-tuning method: Full") model = model.float() if finetuning_args.finetuning_type == "freeze" and is_trainable: logger.info("Fine-tuning method: Freeze") num_layers = ( getattr(model.config, "num_hidden_layers", None) or getattr(model.config, "num_layers", None) or getattr(model.config, "n_layer", None) ) if not num_layers: raise ValueError("Current model does not support freeze tuning.") if finetuning_args.num_layer_trainable > 0: # fine-tuning the last n layers if num_layer_trainable > 0 trainable_layer_ids = [num_layers - k - 1 for k in range(finetuning_args.num_layer_trainable)] else: # fine-tuning the first n layers if num_layer_trainable < 0 trainable_layer_ids = [k for k in range(-finetuning_args.num_layer_trainable)] trainable_layers = [] for module_name in finetuning_args.name_module_trainable: for idx in trainable_layer_ids: trainable_layers.append("{:d}.{}".format(idx, module_name)) for name, param in model.named_parameters(): if not any(trainable_layer in name for trainable_layer in trainable_layers): param.requires_grad_(False) else: param.data = param.data.to(torch.float32) if finetuning_args.finetuning_type == "lora": logger.info("Fine-tuning method: LoRA") checkpoint_to_resume = None if model_args.checkpoint_dir is not None: is_mergeable = True if getattr(model, "quantization_method", None): # merge lora in quantized model is unstable assert len(model_args.checkpoint_dir) == 1, "Quantized model only accepts a single checkpoint." is_mergeable = False if (is_trainable and finetuning_args.resume_lora_training) or (not is_mergeable): checkpoints_to_merge, checkpoint_to_resume = model_args.checkpoint_dir[:-1], model_args.checkpoint_dir[-1] else: checkpoints_to_merge = model_args.checkpoint_dir for checkpoint in checkpoints_to_merge: model = PeftModel.from_pretrained(model, checkpoint) model = model.merge_and_unload() if len(checkpoints_to_merge) > 0: logger.info("Merged {} model checkpoint(s).".format(len(checkpoints_to_merge))) if checkpoint_to_resume is not None: # resume lora training model = PeftModel.from_pretrained(model, checkpoint_to_resume, is_trainable=is_trainable) if is_trainable and checkpoint_to_resume is None: # create new lora weights while training if len(finetuning_args.lora_target) == 1 and finetuning_args.lora_target[0] == "all": target_modules = find_all_linear_modules(model) else: target_modules = finetuning_args.lora_target lora_config = LoraConfig( task_type=TaskType.CAUSAL_LM, inference_mode=False, r=finetuning_args.lora_rank, lora_alpha=finetuning_args.lora_alpha, lora_dropout=finetuning_args.lora_dropout, target_modules=target_modules, modules_to_save=finetuning_args.additional_target ) model = get_peft_model(model, lora_config) for param in filter(lambda p: p.requires_grad, model.parameters()): param.data = param.data.to(torch.float32) if model_args.checkpoint_dir is not None: logger.info("Loaded fine-tuned model from checkpoint(s): {}".format(",".join(model_args.checkpoint_dir))) return model