from typing import TYPE_CHECKING, Any, Dict from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer from trl import AutoModelForCausalLMWithValueHead from ..extras.logging import get_logger from ..extras.misc import count_parameters, try_download_model_from_ms from .adapter import init_adapter from .patcher import patch_config, patch_model, patch_tokenizer, patch_valuehead_model from .utils.misc import load_valuehead_params, register_autoclass from .utils.mod import convert_pretrained_model_to_mod, load_mod_pretrained_model from .utils.unsloth import load_unsloth_pretrained_model if TYPE_CHECKING: from transformers import PretrainedConfig, PreTrainedModel, PreTrainedTokenizer from ..hparams import FinetuningArguments, ModelArguments logger = get_logger(__name__) def _get_init_kwargs(model_args: "ModelArguments") -> Dict[str, Any]: r""" Gets arguments to load config/tokenizer/model. Note: including inplace operation of model_args. """ model_args.model_name_or_path = try_download_model_from_ms(model_args) return { "trust_remote_code": True, "cache_dir": model_args.cache_dir, "revision": model_args.model_revision, "token": model_args.hf_hub_token, } def load_tokenizer(model_args: "ModelArguments") -> "PreTrainedTokenizer": r""" Loads pretrained tokenizer. """ init_kwargs = _get_init_kwargs(model_args) try: tokenizer = AutoTokenizer.from_pretrained( model_args.model_name_or_path, use_fast=model_args.use_fast_tokenizer, split_special_tokens=model_args.split_special_tokens, padding_side="right", **init_kwargs, ) except ValueError: # try the fast one tokenizer = AutoTokenizer.from_pretrained( model_args.model_name_or_path, use_fast=True, padding_side="right", **init_kwargs, ) patch_tokenizer(tokenizer) return tokenizer def load_config(model_args: "ModelArguments") -> "PretrainedConfig": r""" Loads model config. """ init_kwargs = _get_init_kwargs(model_args) return AutoConfig.from_pretrained(model_args.model_name_or_path, **init_kwargs) def load_model( tokenizer: "PreTrainedTokenizer", model_args: "ModelArguments", finetuning_args: "FinetuningArguments", is_trainable: bool = False, add_valuehead: bool = False, ) -> "PreTrainedModel": r""" Loads pretrained model. """ init_kwargs = _get_init_kwargs(model_args) config = load_config(model_args) patch_config(config, tokenizer, model_args, init_kwargs, is_trainable) model = None lazy_load = False if model_args.use_unsloth: if model_args.adapter_name_or_path is not None: lazy_load = True elif is_trainable: model = load_unsloth_pretrained_model(config, model_args) if model is None and not lazy_load: init_kwargs["config"] = config init_kwargs["pretrained_model_name_or_path"] = model_args.model_name_or_path if model_args.mixture_of_depths == "load": model = load_mod_pretrained_model(**init_kwargs) else: model = AutoModelForCausalLM.from_pretrained(**init_kwargs) if model_args.mixture_of_depths == "convert": model = convert_pretrained_model_to_mod(model, config, model_args) if not lazy_load: patch_model(model, tokenizer, model_args, is_trainable) register_autoclass(config, model, tokenizer) model = init_adapter(config, model, model_args, finetuning_args, is_trainable) if add_valuehead: model = AutoModelForCausalLMWithValueHead.from_pretrained(model) patch_valuehead_model(model) if model_args.adapter_name_or_path is not None: vhead_path = model_args.adapter_name_or_path[-1] else: vhead_path = model_args.model_name_or_path vhead_params = load_valuehead_params(vhead_path, model_args) if vhead_params is not None: model.load_state_dict(vhead_params, strict=False) logger.info("Loaded valuehead from checkpoint: {}".format(vhead_path)) if not is_trainable: model.requires_grad_(False) model.eval() else: model.train() trainable_params, all_param = count_parameters(model) if is_trainable: param_stats = "trainable params: {:d} || all params: {:d} || trainable%: {:.4f}".format( trainable_params, all_param, 100 * trainable_params / all_param ) else: param_stats = "all params: {:d}".format(all_param) logger.info(param_stats) if model_args.print_param_status: for name, param in model.named_parameters(): print( "name: {}, dtype: {}, device: {}, trainable: {}".format( name, param.dtype, param.device, param.requires_grad ) ) return model