import json import uvicorn from fastapi import FastAPI, HTTPException from fastapi.middleware.cors import CORSMiddleware from contextlib import asynccontextmanager from sse_starlette import EventSourceResponse from typing import List, Tuple from llmtuner.tuner import get_infer_args from llmtuner.extras.misc import torch_gc from llmtuner.chat.stream_chat import ChatModel from llmtuner.api.protocol import ( ModelCard, ModelList, ChatMessage, DeltaMessage, ChatCompletionRequest, ChatCompletionResponse, ChatCompletionStreamResponse, ChatCompletionResponseChoice, ChatCompletionResponseStreamChoice, ChatCompletionResponseUsage ) @asynccontextmanager async def lifespan(app: FastAPI): # collects GPU memory yield torch_gc() def create_app(): chat_model = ChatModel(*get_infer_args()) app = FastAPI(lifespan=lifespan) app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) @app.get("/v1/models", response_model=ModelList) async def list_models(): model_card = ModelCard(id="gpt-3.5-turbo") return ModelList(data=[model_card]) @app.post("/v1/chat/completions", response_model=ChatCompletionResponse) async def create_chat_completion(request: ChatCompletionRequest): if request.messages[-1].role != "user": raise HTTPException(status_code=400, detail="Invalid request") query = request.messages[-1].content prev_messages = request.messages[:-1] if len(prev_messages) > 0 and prev_messages[0].role == "system": prefix = prev_messages.pop(0).content else: prefix = None history = [] if len(prev_messages) % 2 == 0: for i in range(0, len(prev_messages), 2): if prev_messages[i].role == "user" and prev_messages[i+1].role == "assistant": history.append([prev_messages[i].content, prev_messages[i+1].content]) if request.stream: generate = predict(query, history, prefix, request) return EventSourceResponse(generate, media_type="text/event-stream") response, (prompt_length, response_length) = chat_model.chat( query, history, prefix, temperature=request.temperature, top_p=request.top_p, max_new_tokens=request.max_tokens ) usage = ChatCompletionResponseUsage( prompt_tokens=prompt_length, completion_tokens=response_length, total_tokens=prompt_length+response_length ) choice_data = ChatCompletionResponseChoice( index=0, message=ChatMessage(role="assistant", content=response), finish_reason="stop" ) return ChatCompletionResponse(model=request.model, choices=[choice_data], usage=usage, object="chat.completion") async def predict(query: str, history: List[Tuple[str, str]], prefix: str, request: ChatCompletionRequest): choice_data = ChatCompletionResponseStreamChoice( index=0, delta=DeltaMessage(role="assistant"), finish_reason=None ) chunk = ChatCompletionStreamResponse(model=request.model, choices=[choice_data], object="chat.completion.chunk") yield json.dumps(chunk, ensure_ascii=False) for new_text in chat_model.stream_chat( query, history, prefix, temperature=request.temperature, top_p=request.top_p, max_new_tokens=request.max_tokens ): if len(new_text) == 0: continue choice_data = ChatCompletionResponseStreamChoice( index=0, delta=DeltaMessage(content=new_text), finish_reason=None ) chunk = ChatCompletionStreamResponse(model=request.model, choices=[choice_data], object="chat.completion.chunk") yield json.dumps(chunk, ensure_ascii=False) choice_data = ChatCompletionResponseStreamChoice( index=0, delta=DeltaMessage(), finish_reason="stop" ) chunk = ChatCompletionStreamResponse(model=request.model, choices=[choice_data], object="chat.completion.chunk") yield json.dumps(chunk, ensure_ascii=False) yield "[DONE]" return app if __name__ == "__main__": app = create_app() uvicorn.run(app, host="0.0.0.0", port=8000, workers=1)