# Copyright 2025 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pytest import torch from transformers import AutoConfig, AutoModelForVision2Seq from llamafactory.extras.packages import is_transformers_version_greater_than from llamafactory.hparams import FinetuningArguments, ModelArguments from llamafactory.model.adapter import init_adapter @pytest.mark.parametrize("freeze_vision_tower", (False, True)) @pytest.mark.parametrize("freeze_multi_modal_projector", (False, True)) @pytest.mark.parametrize("freeze_language_model", (False, True)) def test_visual_full(freeze_vision_tower: bool, freeze_multi_modal_projector: bool, freeze_language_model: bool): model_args = ModelArguments(model_name_or_path="Qwen/Qwen2-VL-2B-Instruct") finetuning_args = FinetuningArguments( finetuning_type="full", freeze_vision_tower=freeze_vision_tower, freeze_multi_modal_projector=freeze_multi_modal_projector, freeze_language_model=freeze_language_model, ) config = AutoConfig.from_pretrained(model_args.model_name_or_path) with torch.device("meta"): model = AutoModelForVision2Seq.from_config(config) model = init_adapter(config, model, model_args, finetuning_args, is_trainable=True) for name, param in model.named_parameters(): if any(key in name for key in ["visual.patch_embed", "visual.blocks"]): assert param.requires_grad != freeze_vision_tower elif "visual.merger" in name: assert param.requires_grad != freeze_multi_modal_projector else: assert param.requires_grad != freeze_language_model @pytest.mark.parametrize("freeze_vision_tower,freeze_language_model", ((False, False), (False, True), (True, False))) def test_visual_lora(freeze_vision_tower: bool, freeze_language_model: bool): model_args = ModelArguments(model_name_or_path="Qwen/Qwen2-VL-2B-Instruct") finetuning_args = FinetuningArguments( finetuning_type="lora", freeze_vision_tower=freeze_vision_tower, freeze_language_model=freeze_language_model ) config = AutoConfig.from_pretrained(model_args.model_name_or_path) with torch.device("meta"): model = AutoModelForVision2Seq.from_config(config) model = init_adapter(config, model, model_args, finetuning_args, is_trainable=True) trainable_params, frozen_params = set(), set() for name, param in model.named_parameters(): if param.requires_grad: trainable_params.add(name) else: frozen_params.add(name) if is_transformers_version_greater_than("4.52.0"): visual_param_name = "base_model.model.model.visual.blocks.0.attn.qkv.lora_A.default.weight" language_param_name = "base_model.model.model.language_model.layers.0.self_attn.q_proj.lora_A.default.weight" merger_param_name = "base_model.model.model.visual.merger.lora_A.default.weight" else: visual_param_name = "base_model.model.visual.blocks.0.attn.qkv.lora_A.default.weight" language_param_name = "base_model.model.model.layers.0.self_attn.q_proj.lora_A.default.weight" merger_param_name = "base_model.model.visual.merger.lora_A.default.weight" assert (visual_param_name in trainable_params) != freeze_vision_tower assert (language_param_name in trainable_params) != freeze_language_model assert (merger_param_name in trainable_params) is False def test_visual_model_save_load(): # check VLM's state dict: https://github.com/huggingface/transformers/pull/38385 model_args = ModelArguments(model_name_or_path="Qwen/Qwen2-VL-2B-Instruct") finetuning_args = FinetuningArguments(finetuning_type="full") config = AutoConfig.from_pretrained(model_args.model_name_or_path) with torch.device("meta"): model = AutoModelForVision2Seq.from_config(config) model = init_adapter(config, model, model_args, finetuning_args, is_trainable=False) loaded_model_weight = dict(model.named_parameters()) model.save_pretrained(os.path.join("output", "qwen2_vl"), max_shard_size="10GB", safe_serialization=False) saved_model_weight = torch.load(os.path.join("output", "qwen2_vl", "pytorch_model.bin"), weights_only=False) if is_transformers_version_greater_than("4.52.0"): assert "model.language_model.layers.0.self_attn.q_proj.weight" in loaded_model_weight else: assert "model.layers.0.self_attn.q_proj.weight" in loaded_model_weight assert "model.layers.0.self_attn.q_proj.weight" in saved_model_weight