import torch from typing import Literal, Optional from dataclasses import dataclass, field @dataclass class ModelArguments: r""" Arguments pertaining to which model/config/tokenizer we are going to fine-tune. """ model_name_or_path: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where to store the pretrained models downloaded from huggingface.co."} ) use_fast_tokenizer: Optional[bool] = field( default=False, metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} ) use_auth_token: Optional[bool] = field( default=False, metadata={"help": "Will use the token generated when running `huggingface-cli login`."} ) model_revision: Optional[str] = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} ) padding_side: Optional[Literal["left", "right"]] = field( default="left", metadata={"help": "The side on which the model should have padding applied."} ) quantization_bit: Optional[int] = field( default=None, metadata={"help": "The number of bits to quantize the model."} ) quantization_type: Optional[Literal["fp4", "nf4"]] = field( default="nf4", metadata={"help": "Quantization data type to use in int4 training."} ) double_quantization: Optional[bool] = field( default=True, metadata={"help": "Whether to use double quantization in int4 training or not."} ) rope_scaling: Optional[Literal["linear", "dynamic"]] = field( default=None, metadata={"help": "Adopt scaled rotary positional embeddings."} ) checkpoint_dir: Optional[str] = field( default=None, metadata={"help": "Path to the directory(s) containing the delta model checkpoints as well as the configurations."} ) reward_model: Optional[str] = field( default=None, metadata={"help": "Path to the directory containing the checkpoints of the reward model."} ) plot_loss: Optional[bool] = field( default=False, metadata={"help": "Whether to plot the training loss after fine-tuning or not."} ) hf_auth_token: Optional[str] = field( default=None, metadata={"help": "Auth token to log in with Hugging Face Hub."} ) compute_dtype: Optional[torch.dtype] = field( default=None, metadata={"help": "Used in quantization configs. Do not specify this argument manually."} ) model_max_length: Optional[int] = field( default=None, metadata={"help": "Used in rope scaling. Do not specify this argument manually."} ) def __post_init__(self): if self.compute_dtype is not None or self.model_max_length is not None: raise ValueError("These arguments cannot be specified.") if self.checkpoint_dir is not None: # support merging multiple lora weights self.checkpoint_dir = [cd.strip() for cd in self.checkpoint_dir.split(",")] if self.quantization_bit is not None: assert self.quantization_bit in [4, 8], "We only accept 4-bit or 8-bit quantization." if self.use_auth_token == True and self.hf_auth_token is not None: from huggingface_hub.hf_api import HfFolder # lazy load HfFolder.save_token(self.hf_auth_token)