import logging import os import time from threading import Thread from typing import TYPE_CHECKING, Any, Dict, Generator, Tuple import gradio as gr import transformers from gradio.components import Component # cannot use TYPE_CHECKING here from transformers.trainer import TRAINING_ARGS_NAME from transformers.utils import is_torch_cuda_available from ..extras.callbacks import LogCallback from ..extras.constants import TRAINING_STAGES from ..extras.logging import LoggerHandler from ..extras.misc import get_device_count, torch_gc from ..train import run_exp from .common import get_module, get_save_dir, load_args, load_config, save_args from .locales import ALERTS from .utils import gen_cmd, get_eval_results, update_process_bar if TYPE_CHECKING: from .manager import Manager class Runner: def __init__(self, manager: "Manager", demo_mode: bool = False) -> None: self.manager = manager self.demo_mode = demo_mode """ Resume """ self.thread: "Thread" = None self.do_train = True self.running_data: Dict["Component", Any] = None """ State """ self.aborted = False self.running = False """ Handler """ self.logger_handler = LoggerHandler() self.logger_handler.setLevel(logging.INFO) logging.root.addHandler(self.logger_handler) transformers.logging.add_handler(self.logger_handler) @property def alive(self) -> bool: return self.thread is not None def set_abort(self) -> None: self.aborted = True def _initialize(self, data: Dict["Component", Any], do_train: bool, from_preview: bool) -> str: get = lambda elem_id: data[self.manager.get_elem_by_id(elem_id)] lang, model_name, model_path = get("top.lang"), get("top.model_name"), get("top.model_path") dataset = get("train.dataset") if do_train else get("eval.dataset") if self.running: return ALERTS["err_conflict"][lang] if not model_name: return ALERTS["err_no_model"][lang] if not model_path: return ALERTS["err_no_path"][lang] if len(dataset) == 0: return ALERTS["err_no_dataset"][lang] if not from_preview and self.demo_mode: return ALERTS["err_demo"][lang] if not from_preview and get_device_count() > 1: return ALERTS["err_device_count"][lang] if do_train: stage = TRAINING_STAGES[get("train.training_stage")] reward_model = get("train.reward_model") if stage == "ppo" and not reward_model: return ALERTS["err_no_reward_model"][lang] if not from_preview and not is_torch_cuda_available(): gr.Warning(ALERTS["warn_no_cuda"][lang]) self.aborted = False self.logger_handler.reset() self.trainer_callback = LogCallback(self) return "" def _finalize(self, lang: str, finish_info: str) -> str: self.thread = None self.running_data = None self.running = False torch_gc() if self.aborted: return ALERTS["info_aborted"][lang] else: return finish_info def _parse_train_args(self, data: Dict["Component", Any]) -> Dict[str, Any]: get = lambda elem_id: data[self.manager.get_elem_by_id(elem_id)] user_config = load_config() if get("top.adapter_path"): adapter_name_or_path = ",".join( [ get_save_dir(get("top.model_name"), get("top.finetuning_type"), adapter) for adapter in get("top.adapter_path") ] ) else: adapter_name_or_path = None args = dict( stage=TRAINING_STAGES[get("train.training_stage")], do_train=True, model_name_or_path=get("top.model_path"), adapter_name_or_path=adapter_name_or_path, cache_dir=user_config.get("cache_dir", None), finetuning_type=get("top.finetuning_type"), quantization_bit=int(get("top.quantization_bit")) if get("top.quantization_bit") in ["8", "4"] else None, template=get("top.template"), rope_scaling=get("top.rope_scaling") if get("top.rope_scaling") in ["linear", "dynamic"] else None, flash_attn=(get("top.booster") == "flashattn"), use_unsloth=(get("top.booster") == "unsloth"), dataset_dir=get("train.dataset_dir"), dataset=",".join(get("train.dataset")), cutoff_len=get("train.cutoff_len"), learning_rate=float(get("train.learning_rate")), num_train_epochs=float(get("train.num_train_epochs")), max_samples=int(get("train.max_samples")), per_device_train_batch_size=get("train.batch_size"), gradient_accumulation_steps=get("train.gradient_accumulation_steps"), lr_scheduler_type=get("train.lr_scheduler_type"), max_grad_norm=float(get("train.max_grad_norm")), logging_steps=get("train.logging_steps"), save_steps=get("train.save_steps"), warmup_steps=get("train.warmup_steps"), neftune_noise_alpha=get("train.neftune_alpha") or None, optim=get("train.optim"), resize_vocab=get("train.resize_vocab"), packing=get("train.packing"), upcast_layernorm=get("train.upcast_layernorm"), use_llama_pro=get("train.use_llama_pro"), shift_attn=get("train.shift_attn"), use_galore=get("train.use_galore"), output_dir=get_save_dir(get("top.model_name"), get("top.finetuning_type"), get("train.output_dir")), fp16=(get("train.compute_type") == "fp16"), bf16=(get("train.compute_type") == "bf16"), pure_bf16=(get("train.compute_type") == "pure_bf16"), ) args["disable_tqdm"] = True if args["finetuning_type"] == "freeze": args["num_layer_trainable"] = get("train.num_layer_trainable") args["name_module_trainable"] = get("train.name_module_trainable") elif args["finetuning_type"] == "lora": args["lora_rank"] = get("train.lora_rank") args["lora_alpha"] = get("train.lora_alpha") args["lora_dropout"] = get("train.lora_dropout") args["loraplus_lr_ratio"] = get("train.loraplus_lr_ratio") or None args["create_new_adapter"] = get("train.create_new_adapter") args["use_rslora"] = get("train.use_rslora") args["use_dora"] = get("train.use_dora") args["lora_target"] = get("train.lora_target") or get_module(get("top.model_name")) args["additional_target"] = get("train.additional_target") or None if args["use_llama_pro"]: args["num_layer_trainable"] = get("train.num_layer_trainable") if args["stage"] == "ppo": args["reward_model"] = ",".join( [ get_save_dir(get("top.model_name"), get("top.finetuning_type"), adapter) for adapter in get("train.reward_model") ] ) args["reward_model_type"] = "lora" if args["finetuning_type"] == "lora" else "full" if args["stage"] == "dpo": args["dpo_beta"] = get("train.dpo_beta") args["dpo_ftx"] = get("train.dpo_ftx") if get("train.val_size") > 1e-6 and args["stage"] != "ppo": args["val_size"] = get("train.val_size") args["evaluation_strategy"] = "steps" args["eval_steps"] = args["save_steps"] args["per_device_eval_batch_size"] = args["per_device_train_batch_size"] args["load_best_model_at_end"] = args["stage"] not in ["rm", "ppo"] if args["use_galore"]: args["galore_rank"] = get("train.galore_rank") args["galore_update_interval"] = get("train.galore_update_interval") args["galore_scale"] = get("train.galore_scale") args["galore_target"] = get("train.galore_target") return args def _parse_eval_args(self, data: Dict["Component", Any]) -> Dict[str, Any]: get = lambda elem_id: data[self.manager.get_elem_by_id(elem_id)] user_config = load_config() if get("top.adapter_path"): adapter_name_or_path = ",".join( [ get_save_dir(get("top.model_name"), get("top.finetuning_type"), adapter) for adapter in get("top.adapter_path") ] ) else: adapter_name_or_path = None args = dict( stage="sft", model_name_or_path=get("top.model_path"), adapter_name_or_path=adapter_name_or_path, cache_dir=user_config.get("cache_dir", None), finetuning_type=get("top.finetuning_type"), quantization_bit=int(get("top.quantization_bit")) if get("top.quantization_bit") in ["8", "4"] else None, template=get("top.template"), rope_scaling=get("top.rope_scaling") if get("top.rope_scaling") in ["linear", "dynamic"] else None, flash_attn=(get("top.booster") == "flashattn"), use_unsloth=(get("top.booster") == "unsloth"), dataset_dir=get("eval.dataset_dir"), dataset=",".join(get("eval.dataset")), cutoff_len=get("eval.cutoff_len"), max_samples=int(get("eval.max_samples")), per_device_eval_batch_size=get("eval.batch_size"), predict_with_generate=True, max_new_tokens=get("eval.max_new_tokens"), top_p=get("eval.top_p"), temperature=get("eval.temperature"), output_dir=get_save_dir(get("top.model_name"), get("top.finetuning_type"), get("eval.output_dir")), ) args["disable_tqdm"] = True if get("eval.predict"): args["do_predict"] = True else: args["do_eval"] = True return args def _preview(self, data: Dict["Component", Any], do_train: bool) -> Generator[Tuple[str, "gr.Slider"], None, None]: error = self._initialize(data, do_train, from_preview=True) if error: gr.Warning(error) yield error, gr.Slider(visible=False) else: args = self._parse_train_args(data) if do_train else self._parse_eval_args(data) yield gen_cmd(args), gr.Slider(visible=False) def _launch(self, data: Dict["Component", Any], do_train: bool) -> Generator[Tuple[str, "gr.Slider"], None, None]: error = self._initialize(data, do_train, from_preview=False) if error: gr.Warning(error) yield error, gr.Slider(visible=False) else: args = self._parse_train_args(data) if do_train else self._parse_eval_args(data) run_kwargs = dict(args=args, callbacks=[self.trainer_callback]) self.do_train, self.running_data = do_train, data self.thread = Thread(target=run_exp, kwargs=run_kwargs) self.thread.start() yield from self.monitor() def preview_train(self, data: Dict[Component, Any]) -> Generator[Tuple[str, gr.Slider], None, None]: yield from self._preview(data, do_train=True) def preview_eval(self, data: Dict[Component, Any]) -> Generator[Tuple[str, gr.Slider], None, None]: yield from self._preview(data, do_train=False) def run_train(self, data: Dict[Component, Any]) -> Generator[Tuple[str, gr.Slider], None, None]: yield from self._launch(data, do_train=True) def run_eval(self, data: Dict[Component, Any]) -> Generator[Tuple[str, gr.Slider], None, None]: yield from self._launch(data, do_train=False) def monitor(self) -> Generator[Tuple[str, "gr.Slider"], None, None]: get = lambda elem_id: self.running_data[self.manager.get_elem_by_id(elem_id)] self.running = True lang = get("top.lang") output_dir = get_save_dir( get("top.model_name"), get("top.finetuning_type"), get("{}.output_dir".format("train" if self.do_train else "eval")), ) while self.thread is not None and self.thread.is_alive(): if self.aborted: yield ALERTS["info_aborting"][lang], gr.Slider(visible=False) else: yield self.logger_handler.log, update_process_bar(self.trainer_callback) time.sleep(2) if self.do_train: if os.path.exists(os.path.join(output_dir, TRAINING_ARGS_NAME)): finish_info = ALERTS["info_finished"][lang] else: finish_info = ALERTS["err_failed"][lang] else: if os.path.exists(os.path.join(output_dir, "all_results.json")): finish_info = get_eval_results(os.path.join(output_dir, "all_results.json")) else: finish_info = ALERTS["err_failed"][lang] yield self._finalize(lang, finish_info), gr.Slider(visible=False) def save_args(self, data: Dict[Component, Any]) -> Tuple[str, "gr.Slider"]: error = self._initialize(data, do_train=True, from_preview=True) if error: gr.Warning(error) return error, gr.Slider(visible=False) config_dict: Dict[str, Any] = {} lang = data[self.manager.get_elem_by_id("top.lang")] config_path = data[self.manager.get_elem_by_id("train.config_path")] skip_ids = ["top.lang", "top.model_path", "train.output_dir", "train.config_path"] for elem, value in data.items(): elem_id = self.manager.get_id_by_elem(elem) if elem_id not in skip_ids: config_dict[elem_id] = value save_path = save_args(config_path, config_dict) return ALERTS["info_config_saved"][lang] + save_path, gr.Slider(visible=False) def load_args(self, lang: str, config_path: str) -> Dict[Component, Any]: config_dict = load_args(config_path) if config_dict is None: gr.Warning(ALERTS["err_config_not_found"][lang]) return {self.manager.get_elem_by_id("top.lang"): lang} output_dict: Dict["Component", Any] = {} for elem_id, value in config_dict.items(): output_dict[self.manager.get_elem_by_id(elem_id)] = value return output_dict