from typing import TYPE_CHECKING, Any, Dict, Generator, List, Literal from itertools import chain from llmtuner.extras.constants import IGNORE_INDEX from llmtuner.extras.template import get_template if TYPE_CHECKING: from datasets import Dataset from transformers import Seq2SeqTrainingArguments from transformers.tokenization_utils import PreTrainedTokenizer from llmtuner.hparams import DataArguments def preprocess_dataset( dataset: "Dataset", tokenizer: "PreTrainedTokenizer", data_args: "DataArguments", training_args: "Seq2SeqTrainingArguments", stage: Literal["pt", "sft", "rm", "ppo"] ) -> "Dataset": column_names = list(dataset.column_names) template = get_template(data_args.template) def construct_example(examples: Dict[str, List[Any]]) -> Generator[Any, None, None]: for i in range(len(examples["prompt"])): query, response = examples["prompt"][i], examples["response"][i] query = query + "\n" + examples["query"][i] if "query" in examples and examples["query"][i] else query history = examples["history"][i] if "history" in examples else None prefix = examples["prefix"][i] if "prefix" in examples else None yield query, response, history, prefix def preprocess_pretrain_dataset(examples: Dict[str, List[Any]]) -> Dict[str, Any]: # build grouped texts with format `X1 X2 X3 ...` (without ) if hasattr(tokenizer, "tokenizer"): # for tiktoken tokenizer (Qwen) kwargs = dict(allowed_special="all") else: kwargs = dict(add_special_tokens=False) tokenized_examples = tokenizer(examples["prompt"], **kwargs) concatenated_examples = {k: list(chain(*tokenized_examples[k])) for k in tokenized_examples.keys()} total_length = len(concatenated_examples[list(concatenated_examples.keys())[0]]) block_size = data_args.max_source_length # we drop the small remainder, and if the total_length < block_size, we exclude this batch total_length = (total_length // block_size) * block_size # split by chunks of max_source_length result = { k: [t[i: i + block_size] for i in range(0, total_length, block_size)] for k, t in concatenated_examples.items() } result["labels"] = result["input_ids"].copy() return result def preprocess_supervised_dataset(examples: Dict[str, List[Any]]) -> Dict[str, Any]: # build inputs with format ` X Y ` and labels with format ` ... Y ` # for multiturn examples, we only mask the prompt part in each prompt-response pair. model_inputs = {"input_ids": [], "attention_mask": [], "labels": []} max_length = data_args.max_source_length + data_args.max_target_length for query, response, history, prefix in construct_example(examples): input_ids, labels = [], [] for source_ids, target_ids in template.encode_multiturn(tokenizer, query, response, history, prefix): if len(source_ids) > data_args.max_source_length: source_ids = source_ids[:data_args.max_source_length] if len(target_ids) > data_args.max_target_length: target_ids = target_ids[:data_args.max_target_length] if len(input_ids) + len(source_ids) + len(target_ids) > max_length: break input_ids += source_ids + target_ids labels += [IGNORE_INDEX] * len(source_ids) + target_ids model_inputs["input_ids"].append(input_ids) model_inputs["attention_mask"].append([1] * len(input_ids)) model_inputs["labels"].append(labels) return model_inputs def preprocess_unsupervised_dataset(examples: Dict[str, List[Any]]) -> Dict[str, Any]: # build inputs with format ` X` and labels with format ` Y` model_inputs = {"input_ids": [], "attention_mask": [], "labels": []} for query, response, history, prefix in construct_example(examples): source_ids, target_ids = template.encode_oneturn(tokenizer, query, response, history, prefix) if len(source_ids) > data_args.max_source_length: source_ids = source_ids[:data_args.max_source_length] if len(target_ids) > data_args.max_target_length: target_ids = target_ids[:data_args.max_target_length] model_inputs["input_ids"].append(source_ids) model_inputs["attention_mask"].append([1] * len(source_ids)) model_inputs["labels"].append(target_ids) return model_inputs def preprocess_pairwise_dataset(examples): # build input pairs with format ` X Y1 ` and ` X Y2 ` model_inputs = {"accept_ids": [], "reject_ids": []} for query, response, history, prefix in construct_example(examples): source_ids, accept_ids = template.encode_oneturn(tokenizer, query, response[0], history, prefix) source_ids, reject_ids = template.encode_oneturn(tokenizer, query, response[1], history, prefix) if len(source_ids) > data_args.max_source_length: source_ids = source_ids[:data_args.max_source_length] if len(accept_ids) > data_args.max_target_length - 1: # eos token accept_ids = accept_ids[:data_args.max_target_length - 1] if len(reject_ids) > data_args.max_target_length - 1: # eos token reject_ids = reject_ids[:data_args.max_target_length - 1] accept_ids = source_ids + accept_ids + [tokenizer.eos_token_id] reject_ids = source_ids + reject_ids + [tokenizer.eos_token_id] model_inputs["accept_ids"].append(accept_ids) model_inputs["reject_ids"].append(reject_ids) return model_inputs def print_supervised_dataset_example(example): print("input_ids:\n{}".format(example["input_ids"])) print("inputs:\n{}".format(tokenizer.decode(example["input_ids"], skip_special_tokens=False))) print("label_ids:\n{}".format(example["labels"])) print("labels:\n{}".format(''.join([ tokenizer.decode(d, skip_special_tokens=False) if d != IGNORE_INDEX else '-100' for d in example["labels"] ]))) def print_pairwise_dataset_example(example): print("accept_ids:\n{}".format(example["accept_ids"])) print("accepts:\n{}".format(tokenizer.decode(example["accept_ids"], skip_special_tokens=False))) print("reject_ids:\n{}".format(example["reject_ids"])) print("rejects:\n{}".format(tokenizer.decode(example["reject_ids"], skip_special_tokens=False))) def print_unsupervised_dataset_example(example): print("input_ids:\n{}".format(example["input_ids"])) print("inputs:\n{}".format(tokenizer.decode(example["input_ids"], skip_special_tokens=False))) if stage == "pt": dataset = dataset.filter(lambda example: example["prompt"]) preprocess_function = preprocess_pretrain_dataset print_function = print_unsupervised_dataset_example elif stage == "sft" and not training_args.predict_with_generate: dataset = dataset.filter(lambda example: example["prompt"] and example["response"]) preprocess_function = preprocess_supervised_dataset print_function = print_supervised_dataset_example elif stage == "rm": dataset = dataset.filter(lambda example: example["prompt"] and len(example["response"]) > 1) preprocess_function = preprocess_pairwise_dataset print_function = print_pairwise_dataset_example else: dataset = dataset.filter(lambda example: example["prompt"]) preprocess_function = preprocess_unsupervised_dataset print_function = print_unsupervised_dataset_example with training_args.main_process_first(desc="dataset map pre-processing"): kwargs = {} if not data_args.streaming: kwargs = dict( num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, desc="Running tokenizer on dataset" ) dataset = dataset.map( preprocess_function, batched=True, remove_columns=column_names, **kwargs ) if data_args.streaming: dataset = dataset.shuffle(buffer_size=data_args.buffer_size) print_function(next(iter(dataset))) return dataset