from types import MethodType from typing import TYPE_CHECKING, Any, Dict import torch from peft import PeftModel from transformers import PreTrainedModel, PreTrainedTokenizerBase from transformers.integrations import is_deepspeed_zero3_enabled from ..extras.logging import get_logger from ..extras.misc import infer_optim_dtype from .utils.attention import configure_attn_implementation, print_attn_implementation from .utils.checkpointing import prepare_model_for_training from .utils.embedding import resize_embedding_layer from .utils.longlora import configure_longlora from .utils.moe import add_z3_leaf_module from .utils.quantization import configure_quantization from .utils.rope import configure_rope if TYPE_CHECKING: from transformers import PretrainedConfig, PreTrainedTokenizer from trl import AutoModelForCausalLMWithValueHead from ..hparams import ModelArguments logger = get_logger(__name__) def patch_tokenizer(tokenizer: "PreTrainedTokenizer") -> None: if "PreTrainedTokenizerBase" not in str(tokenizer._pad.__func__): tokenizer._pad = MethodType(PreTrainedTokenizerBase._pad, tokenizer) def patch_config( config: "PretrainedConfig", tokenizer: "PreTrainedTokenizer", model_args: "ModelArguments", init_kwargs: Dict[str, Any], is_trainable: bool, ) -> None: if model_args.compute_dtype is None: # priority: bf16 > fp16 > fp32 model_args.compute_dtype = infer_optim_dtype(model_dtype=getattr(config, "torch_dtype", None)) configure_attn_implementation(config, model_args) configure_rope(config, model_args, is_trainable) configure_longlora(config, model_args, is_trainable) configure_quantization(config, tokenizer, model_args, init_kwargs) if model_args.use_cache and not is_trainable: setattr(config, "use_cache", True) logger.info("Using KV cache for faster generation.") if model_args.moe_aux_loss_coef is not None: if getattr(config, "model_type", None) in ["mixtral", "qwen2_moe"]: setattr(config, "router_aux_loss_coef", model_args.moe_aux_loss_coef) elif getattr(config, "model_type", None) == "deepseek": setattr(config, "aux_loss_alpha", model_args.moe_aux_loss_coef) if getattr(config, "model_type", None) == "qwen": setattr(config, "use_flash_attn", model_args.flash_attn) for dtype_name, dtype in [("fp16", torch.float16), ("bf16", torch.bfloat16), ("fp32", torch.float32)]: setattr(config, dtype_name, model_args.compute_dtype == dtype) if getattr(config, "model_type", None) == "qwen2" and is_trainable and model_args.flash_attn: setattr(config, "use_cache", False) # qwen2 does not support use_cache when using flashattn if getattr(config, "model_type", None) in ["mixtral", "qwen2_moe"] and is_trainable: setattr(config, "output_router_logits", True) init_kwargs["torch_dtype"] = model_args.compute_dtype if not is_deepspeed_zero3_enabled(): init_kwargs["low_cpu_mem_usage"] = model_args.low_cpu_mem_usage if init_kwargs["low_cpu_mem_usage"]: if "device_map" not in init_kwargs and model_args.device_map: init_kwargs["device_map"] = model_args.device_map if init_kwargs["device_map"] == "auto": init_kwargs["offload_folder"] = model_args.offload_folder def patch_model( model: "PreTrainedModel", tokenizer: "PreTrainedTokenizer", model_args: "ModelArguments", is_trainable: bool ) -> None: gen_config = model.generation_config # check and fix generation config if not gen_config.do_sample and ( (gen_config.temperature is not None and gen_config.temperature != 1.0) or (gen_config.top_p is not None and gen_config.top_p != 1.0) or (gen_config.typical_p is not None and gen_config.typical_p != 1.0) ): gen_config.do_sample = True if "GenerationMixin" not in str(model.generate.__func__): model.generate = MethodType(PreTrainedModel.generate, model) if is_trainable and getattr(model.config, "model_type", None) == "chatglm": setattr(model, "lm_head", model.transformer.output_layer) setattr(model, "_keys_to_ignore_on_save", ["lm_head.weight"]) if model_args.resize_vocab: resize_embedding_layer(model, tokenizer) if is_trainable: prepare_model_for_training(model, model_args) add_z3_leaf_module(model) if not model_args.use_unsloth: print_attn_implementation(model.config) try: model.add_model_tags(["llama-factory"]) except Exception: logger.warning("Cannot properly tag the model.") def patch_valuehead_model(model: "AutoModelForCausalLMWithValueHead") -> None: def tie_weights(self: "AutoModelForCausalLMWithValueHead") -> None: if isinstance(self.pretrained_model, PreTrainedModel): self.pretrained_model.tie_weights() def get_input_embeddings(self: "AutoModelForCausalLMWithValueHead") -> torch.nn.Module: if isinstance(self.pretrained_model, PreTrainedModel): return self.pretrained_model.get_input_embeddings() def create_or_update_model_card(self: "AutoModelForCausalLMWithValueHead", output_dir: str) -> None: if isinstance(self.pretrained_model, PeftModel): self.pretrained_model.create_or_update_model_card(output_dir) ignore_modules = [name for name, _ in model.named_parameters() if "pretrained_model" in name] setattr(model, "_keys_to_ignore_on_save", ignore_modules) setattr(model, "tie_weights", MethodType(tie_weights, model)) setattr(model, "get_input_embeddings", MethodType(get_input_embeddings, model)) setattr(model, "create_or_update_model_card", MethodType(create_or_update_model_card, model))