# Start FSDP2 fine-tuning # accelerate launch \ # --config_file examples/accelerate/fsdp2_config.yaml \ # src/train.py examples/ascend/qwen3vlmoe_full_sft_fsdp2.yaml # Change `num_processes` in fsdp2_config.yaml to 16 in A3 ### model model_name_or_path: Qwen/Qwen3-VL-30B-A3B-Instruct image_max_pixels: 262144 video_max_pixels: 16384 trust_remote_code: true use_v1_kernels: true flash_attn: fa2 ### method stage: sft do_train: true finetuning_type: full disable_gradient_checkpointing: false ### dataset dataset: llava_1k_en, llava_1k_zh template: qwen3_vl cutoff_len: 1024 overwrite_cache: true preprocessing_num_workers: 16 dataloader_num_workers: 4 ### output output_dir: saves/Qwen3-VL-30B-A3B-Instruct/full/sft logging_steps: 1 save_steps: 500 max_steps: 500 plot_loss: true overwrite_output_dir: true save_only_model: true report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow] ### train per_device_train_batch_size: 2 gradient_accumulation_steps: 1 learning_rate: 1.0e-4 lr_scheduler_type: cosine warmup_ratio: 0.1 bf16: true ddp_timeout: 180000000 resume_from_checkpoint: null seed: 1234