# Copyright 2025 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from llamafactory.v1.utils.batching_queue import DynamicBatchSizeBuffer, TextBatchingQueue def create_sample(length: int): """Helper to create a mock sample with a specific token length.""" return {"input_ids": torch.ones(length), "attention_mask": torch.ones(length)} class TestDynamicBatchSizeBuffer: def test_append_and_token_count(self): buffer = DynamicBatchSizeBuffer() buffer.append(create_sample(10)) buffer.append(create_sample(20)) assert len(buffer) == 2 assert buffer.total_token_count == 30 def test_get_samples_within_budget(self): buffer = DynamicBatchSizeBuffer() buffer.append(create_sample(10)) buffer.append(create_sample(10)) buffer.append(create_sample(50)) # This one is large # Request 25 tokens. Should get the first two (20 tokens total) samples = buffer.get_samples(max_tokens_per_iteration=25) assert len(samples) == 2 def test_force_return_first_sample(self): buffer = DynamicBatchSizeBuffer() buffer.append(create_sample(100)) # Even though budget is 50, force=True (default) should return the 100-token sample samples = buffer.get_samples(max_tokens_per_iteration=50, force=True) assert len(samples) == 1 assert len(samples[0]["input_ids"]) == 100 def test_flush_removes_used_samples(self): buffer = DynamicBatchSizeBuffer() buffer.append(create_sample(10)) buffer.append(create_sample(20)) # Take the first sample buffer.get_samples(max_tokens_per_iteration=15) buffer.flush() assert len(buffer) == 1 assert buffer.total_token_count == 20 # The remaining sample should now be at the start remaining = buffer.get_samples(max_tokens_per_iteration=50) assert len(remaining[0]["input_ids"]) == 20 class TestTextBatchingQueue: def test_is_full_filled(self): queue = TextBatchingQueue(token_micro_bsz=100, buffer_size=2) queue.put_item(create_sample(10)) assert not queue.is_full_filled() # Only 1 sample, buffer_size=2 queue.put_item(create_sample(10)) assert not queue.is_full_filled() # 2 samples, but only 20 tokens (min 100) queue.put_item(create_sample(90)) assert queue.is_full_filled() # Meets both conditions def test_warmup_logic(self): # token_micro_bsz=1000, starts at 200, reaches 1000 at step 10 queue = TextBatchingQueue(token_micro_bsz=1000, bsz_warmup_steps=10, bsz_warmup_init_mbtoken=200) # Step 0: should be init value assert queue.get_cur_token_micro_bsz() == 200 # Step 5: halfway through warmup (200 + (800 * 5/10)) = 600 queue._step = 5 assert queue.get_cur_token_micro_bsz() == 600 # Step 11: past warmup queue._step = 11 assert queue.get_cur_token_micro_bsz() == 1000 def test_get_micro_batch_integration(self): queue = TextBatchingQueue(token_micro_bsz=50, buffer_size=1) queue.put_item(create_sample(20)) queue.put_item(create_sample(20)) queue.put_item(create_sample(20)) # At step 0 (warmup not triggered as bsz_warmup_steps is -1 default), # it should take samples up to 50 tokens. batch = queue.get_micro_batch(step=0) assert len(batch) == 2 assert queue.empty() is False batch_2 = queue.get_micro_batch(step=1) assert len(batch_2) == 1 assert queue.empty() is True