from typing import TYPE_CHECKING, Optional, Union import torch from transformers.utils.versions import require_version from ..extras.logging import get_logger from ..extras.packages import is_galore_available from ..hparams import FinetuningArguments, ModelArguments from ..model import load_model_and_tokenizer, load_valuehead_params if is_galore_available(): from galore_torch import GaLoreAdafactor, GaLoreAdamW, GaLoreAdamW8bit if TYPE_CHECKING: from transformers import Seq2SeqTrainingArguments, Trainer from transformers.modeling_utils import PreTrainedModel from trl import AutoModelForCausalLMWithValueHead from ..hparams import DataArguments logger = get_logger(__name__) def create_modelcard_and_push( trainer: "Trainer", model_args: "ModelArguments", data_args: "DataArguments", training_args: "Seq2SeqTrainingArguments", finetuning_args: "FinetuningArguments", ) -> None: kwargs = { "tasks": "text-generation", "finetuned_from": model_args.model_name_or_path, "dataset": [dataset.strip() for dataset in data_args.dataset.split(",")], "tags": ["llama-factory", finetuning_args.finetuning_type], } if not training_args.do_train: pass elif training_args.push_to_hub: trainer.push_to_hub(**kwargs) else: trainer.create_model_card(license="other", **kwargs) # prevent from connecting to hub def create_ref_model( model_args: "ModelArguments", finetuning_args: "FinetuningArguments", add_valuehead: Optional[bool] = False ) -> Union["PreTrainedModel", "AutoModelForCausalLMWithValueHead"]: r""" Creates reference model for PPO/DPO training. Evaluation mode is not supported. The valuehead parameter is randomly initialized since it is useless for PPO training. """ if finetuning_args.ref_model is not None: ref_model_args_dict = model_args.to_dict() ref_model_args_dict.update( dict( model_name_or_path=finetuning_args.ref_model, adapter_name_or_path=finetuning_args.ref_model_adapters, quantization_bit=finetuning_args.ref_model_quantization_bit, ) ) ref_model_args = ModelArguments(**ref_model_args_dict) ref_finetuning_args = FinetuningArguments(finetuning_type="lora") ref_model, _ = load_model_and_tokenizer( ref_model_args, ref_finetuning_args, is_trainable=False, add_valuehead=add_valuehead ) logger.info("Created reference model from {}".format(finetuning_args.ref_model)) else: if finetuning_args.finetuning_type == "lora": ref_model = None else: ref_model, _ = load_model_and_tokenizer( model_args, finetuning_args, is_trainable=False, add_valuehead=add_valuehead ) logger.info("Created reference model from the model itself.") return ref_model def create_reward_model( model: "AutoModelForCausalLMWithValueHead", model_args: "ModelArguments", finetuning_args: "FinetuningArguments" ) -> "AutoModelForCausalLMWithValueHead": r""" Creates reward model for PPO training. """ if finetuning_args.reward_model_type == "api": assert finetuning_args.reward_model.startswith("http"), "Please provide full url." logger.info("Use reward server {}".format(finetuning_args.reward_model)) return finetuning_args.reward_model elif finetuning_args.reward_model_type == "lora": model.pretrained_model.load_adapter(finetuning_args.reward_model, "reward") for name, param in model.named_parameters(): # https://github.com/huggingface/peft/issues/1090 if "default" in name: param.data = param.data.to(torch.float32) # trainable params should in fp32 vhead_params = load_valuehead_params(finetuning_args.reward_model, model_args) assert vhead_params is not None, "Reward model is not correctly loaded." model.register_buffer("reward_head_weight", vhead_params["v_head.summary.weight"], persistent=False) model.register_buffer("reward_head_bias", vhead_params["v_head.summary.bias"], persistent=False) model.register_buffer( "default_head_weight", torch.zeros_like(vhead_params["v_head.summary.weight"]), persistent=False ) model.register_buffer( "default_head_bias", torch.zeros_like(vhead_params["v_head.summary.bias"]), persistent=False ) logger.info("Loaded adapter weights of reward model from {}".format(finetuning_args.reward_model)) return None else: reward_model_args_dict = model_args.to_dict() reward_model_args_dict.update( dict( model_name_or_path=finetuning_args.reward_model, adapter_name_or_path=finetuning_args.reward_model_adapters, quantization_bit=finetuning_args.reward_model_quantization_bit, ) ) reward_model_args = ModelArguments(**reward_model_args_dict) reward_finetuning_args = FinetuningArguments(finetuning_type="lora") reward_model, _ = load_model_and_tokenizer( reward_model_args, reward_finetuning_args, is_trainable=False, add_valuehead=True ) logger.info("Loaded full weights of reward model from {}".format(finetuning_args.reward_model)) logger.warning("Please ensure the ppo model and reward model share SAME tokenizer and vocabulary.") return reward_model def create_custom_optimzer( model: "PreTrainedModel", training_args: "Seq2SeqTrainingArguments", finetuning_args: "FinetuningArguments" ) -> Optional["torch.optim.Optimizer"]: if not finetuning_args.use_galore: return None require_version("galore_torch", "To fix: pip install git+https://github.com/hiyouga/GaLore.git") galore_params = [] galore_targets = finetuning_args.galore_target.split(",") for name, module in model.named_modules(): if isinstance(module, torch.nn.Linear) and any(target in name for target in galore_targets): galore_params += list(filter(lambda p: p.requires_grad, module.parameters())) id_galore_params = [id(p) for p in galore_params] trainable_params = filter(lambda p: p.requires_grad, model.parameters()) non_galore_params = [p for p in trainable_params if id(p) not in id_galore_params] # define param groups as galore_params and non_galore_params param_groups = [ {"params": non_galore_params}, { "params": galore_params, "rank": finetuning_args.galore_rank, "update_proj_gap": finetuning_args.galore_update_interval, "scale": finetuning_args.galore_scale, "proj_type": finetuning_args.galore_proj_type, }, ] if training_args.optim == "adamw_torch": optimizer = GaLoreAdamW( param_groups, lr=training_args.learning_rate, eps=training_args.adam_epsilon, betas=(training_args.adam_beta1, training_args.adam_beta2), ) elif training_args.optim in ["adamw_bnb_8bit", "adamw_8bit", "paged_adamw_8bit"]: optimizer = GaLoreAdamW8bit( param_groups, lr=training_args.learning_rate, eps=training_args.adam_epsilon, betas=(training_args.adam_beta1, training_args.adam_beta2), optim_bits=8, is_paged="paged" in training_args.optim, ) elif training_args.optim == "adafactor": optimizer = GaLoreAdafactor( param_groups, lr=training_args.learning_rate, ) else: raise NotImplementedError("Unknow optim: {}".format(training_args.optim)) logger.info("Using GaLore optimizer, may cause hanging at the start of training, wait patiently.") return optimizer