### model model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct reward_model: saves/llama3-8b/lora/reward trust_remote_code: true ### method stage: ppo do_train: true finetuning_type: lora lora_rank: 8 lora_target: all ### dataset dataset: identity,alpaca_en_demo template: llama3 cutoff_len: 2048 max_samples: 1000 overwrite_cache: true preprocessing_num_workers: 16 dataloader_num_workers: 4 ### output output_dir: saves/llama3-8b/lora/ppo logging_steps: 10 save_steps: 500 plot_loss: true overwrite_output_dir: true report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow] ### train per_device_train_batch_size: 1 gradient_accumulation_steps: 8 learning_rate: 1.0e-5 num_train_epochs: 3.0 lr_scheduler_type: cosine warmup_ratio: 0.1 bf16: true ddp_timeout: 180000000 ### generate max_new_tokens: 512 top_k: 0 top_p: 0.9