# Copyright 2024 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from types import MethodType from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union import torch from transformers import Trainer from typing_extensions import override from ...extras.packages import is_transformers_version_equal_to_4_46, is_transformers_version_greater_than from ..callbacks import PissaConvertCallback, SaveProcessorCallback from ..trainer_utils import create_custom_optimizer, create_custom_scheduler if TYPE_CHECKING: from transformers import PreTrainedModel, ProcessorMixin from ...hparams import FinetuningArguments class CustomTrainer(Trainer): r""" Inherits Trainer for custom optimizer. """ def __init__( self, finetuning_args: "FinetuningArguments", processor: Optional["ProcessorMixin"], **kwargs ) -> None: if is_transformers_version_greater_than("4.46"): kwargs["processing_class"] = kwargs.pop("tokenizer") super().__init__(**kwargs) self.finetuning_args = finetuning_args if processor is not None: self.add_callback(SaveProcessorCallback(processor)) if finetuning_args.pissa_convert: self.add_callback(PissaConvertCallback) if finetuning_args.use_badam: from badam import BAdamCallback, clip_grad_norm_old_version # type: ignore self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_old_version, self.accelerator) self.add_callback(BAdamCallback) @override def create_optimizer(self) -> "torch.optim.Optimizer": if self.optimizer is None: self.optimizer = create_custom_optimizer(self.model, self.args, self.finetuning_args) return super().create_optimizer() @override def create_scheduler( self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None ) -> "torch.optim.lr_scheduler.LRScheduler": create_custom_scheduler(self.args, num_training_steps, optimizer) return super().create_scheduler(num_training_steps, optimizer) @override def _get_train_sampler(self) -> Optional["torch.utils.data.Sampler"]: if self.finetuning_args.disable_shuffling: return torch.utils.data.SequentialSampler(self.train_dataset) return super()._get_train_sampler() @override def compute_loss( self, model: "PreTrainedModel", inputs: Dict[str, "torch.Tensor"], return_outputs: bool = False, **kwargs ) -> Union["torch.Tensor", Tuple["torch.Tensor", List["torch.Tensor"]]]: r""" Fixes the loss value for transformers 4.46.0. https://github.com/huggingface/transformers/blob/v4.46.0/src/transformers/trainer.py#L3605 """ loss = super().compute_loss(model, inputs, return_outputs, **kwargs) if is_transformers_version_equal_to_4_46() and not getattr(self, "model_accepts_loss_kwargs", False): # other model should not scale the loss if return_outputs: return (loss[0] / self.args.gradient_accumulation_steps, *loss[1:]) else: return loss / self.args.gradient_accumulation_steps return loss