### model model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct trust_remote_code: true ### method stage: sft do_train: true finetuning_type: full use_badam: true badam_mode: layer badam_switch_mode: ascending badam_switch_interval: 50 badam_verbose: 2 # deepspeed: examples/deepspeed/ds_z3_config.json ### dataset dataset: identity,alpaca_en_demo template: llama3 cutoff_len: 2048 max_samples: 1000 overwrite_cache: true preprocessing_num_workers: 16 dataloader_num_workers: 4 ### output output_dir: saves/llama3-8b/full/sft logging_steps: 10 save_steps: 500 plot_loss: true overwrite_output_dir: true save_only_model: false report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow] ### train per_device_train_batch_size: 1 gradient_accumulation_steps: 8 learning_rate: 1.0e-5 num_train_epochs: 3.0 lr_scheduler_type: cosine warmup_ratio: 0.1 ### eval # val_size: 0.1 # per_device_eval_batch_size: 1 # eval_strategy: steps # eval_steps: 500