Compare commits

..

3 Commits

Author SHA1 Message Date
Kingsley
56f45e826f
[train] fix MPO re-weight (#9405) 2025-11-04 21:10:41 +08:00
魅影
14abb75126
[model] enable using FA in npu (#9397)
Co-authored-by: frozenleaves <frozen@Mac.local>
2025-11-04 19:32:30 +08:00
한송민
5a9939050e
[model] add deepstack_merger_list to Qwen3-VL vision_model_keys (#9399) 2025-11-04 19:27:34 +08:00
4 changed files with 12 additions and 11 deletions

View File

@ -110,6 +110,10 @@ def is_starlette_available():
def is_transformers_version_greater_than(content: str):
return _get_package_version("transformers") >= version.parse(content)
@lru_cache
def is_torch_version_greater_than(content: str):
return _get_package_version("torch") >= version.parse(content)
def is_uvicorn_available():
return _is_package_available("uvicorn")

View File

@ -16,6 +16,7 @@ from typing import TYPE_CHECKING
from ...extras import logging
from ...extras.constants import AttentionFunction
from ...extras.packages import is_torch_version_greater_than
if TYPE_CHECKING:
@ -51,15 +52,14 @@ def configure_attn_implementation(config: "PretrainedConfig", model_args: "Model
requested_attn_implementation = "eager"
elif model_args.flash_attn == AttentionFunction.SDPA:
from transformers.utils import is_torch_sdpa_available
if not is_torch_sdpa_available():
if not is_torch_version_greater_than("2.1.1"):
logger.warning_rank0("torch>=2.1.1 is required for SDPA attention.")
return
requested_attn_implementation = "sdpa"
elif model_args.flash_attn == AttentionFunction.FA2:
if not is_flash_attn_2_available():
from transformers import is_torch_npu_available
if not (is_flash_attn_2_available() or is_torch_npu_available()):
logger.warning_rank0("FlashAttention-2 is not installed.")
return

View File

@ -355,7 +355,7 @@ _register_composite_model(
_register_composite_model(
model_type="qwen3_vl",
projector_key="visual.merger",
vision_model_keys=["visual.patch_embed", "visual.blocks"],
vision_model_keys=["visual.patch_embed", "visual.blocks", "visual.deepstack_merger_list"],
language_model_keys=["language_model", "lm_head"],
lora_conflict_keys=["patch_embed"],
)
@ -364,7 +364,7 @@ _register_composite_model(
_register_composite_model(
model_type="qwen3_vl_moe",
projector_key="visual.merger",
vision_model_keys=["visual.patch_embed", "visual.blocks"],
vision_model_keys=["visual.patch_embed", "visual.blocks", "visual.deepstack_merger_list"],
language_model_keys=["language_model", "lm_head"],
lora_conflict_keys=["patch_embed"],
)
@ -373,7 +373,7 @@ _register_composite_model(
_register_composite_model(
model_type="qwen3_omni_moe_thinker",
projector_key="visual.merger",
vision_model_keys=["visual.patch_embed", "visual.blocks", "audio_tower"],
vision_model_keys=["visual.patch_embed", "visual.blocks", "visual.deepstack_merger_list", "audio_tower"],
language_model_keys=["model", "lm_head"],
lora_conflict_keys=["patch_embed"],
)

View File

@ -203,7 +203,7 @@ class CustomDPOTrainer(DPOTrainer):
bco_losses = self.bco_loss(
policy_chosen_logps, policy_rejected_logps, reference_chosen_logps, reference_rejected_logps
)
losses += bco_losses * self.bco_gemma
losses = (losses + bco_losses * self.bco_gemma) / (1.0 + self.bco_gemma) # re-weight W_p and W_q
return losses, chosen_rewards, rejected_rewards
@ -284,9 +284,6 @@ class CustomDPOTrainer(DPOTrainer):
sft_loss = -policy_chosen_logps_avg
if self.ftx_gamma > 1e-6:
losses += self.ftx_gamma * sft_loss
if self.bco_gemma > 1e-6:
# re-weigthing for MPO
losses /= self.ftx_gamma + self.bco_gemma + 1.0
prefix = "eval_" if train_eval == "eval" else ""
metrics[f"{prefix}rewards/chosen"] = chosen_rewards.mean().item()