mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-10-16 08:38:09 +08:00
implement stream generating
Former-commit-id: 6cc9535975d823ffef7e1686749b69b40347a8ec
This commit is contained in:
parent
a817801c0f
commit
f9c51a8340
@ -3,12 +3,13 @@
|
|||||||
# Usage: python cli_demo.py --checkpoint_dir path_to_checkpoint
|
# Usage: python cli_demo.py --checkpoint_dir path_to_checkpoint
|
||||||
|
|
||||||
|
|
||||||
import torch
|
|
||||||
from utils import (
|
from utils import (
|
||||||
load_pretrained,
|
load_pretrained,
|
||||||
prepare_infer_args,
|
prepare_infer_args,
|
||||||
get_logits_processor
|
get_logits_processor
|
||||||
)
|
)
|
||||||
|
from threading import Thread
|
||||||
|
from transformers import TextIteratorStreamer
|
||||||
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
@ -34,25 +35,32 @@ def main():
|
|||||||
return prompt
|
return prompt
|
||||||
|
|
||||||
format_example = format_example_alpaca if data_args.prompt_template == "alpaca" else format_example_ziya
|
format_example = format_example_alpaca if data_args.prompt_template == "alpaca" else format_example_ziya
|
||||||
|
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
||||||
|
|
||||||
def predict(query, history: list):
|
def predict_and_print(query, history: list):
|
||||||
input_ids = tokenizer([format_example(query, history)], return_tensors="pt")["input_ids"]
|
input_ids = tokenizer([format_example(query, history)], return_tensors="pt")["input_ids"]
|
||||||
input_ids = input_ids.to(model.device)
|
input_ids = input_ids.to(model.device)
|
||||||
gen_kwargs = {
|
gen_kwargs = {
|
||||||
|
"input_ids": input_ids,
|
||||||
"do_sample": True,
|
"do_sample": True,
|
||||||
"top_p": 0.7,
|
"top_p": 0.7,
|
||||||
"temperature": 0.95,
|
"temperature": 0.95,
|
||||||
"num_beams": 1,
|
"num_beams": 1,
|
||||||
"max_new_tokens": 256,
|
"max_new_tokens": 256,
|
||||||
"repetition_penalty": 1.0,
|
"repetition_penalty": 1.0,
|
||||||
"logits_processor": get_logits_processor()
|
"logits_processor": get_logits_processor(),
|
||||||
|
"streamer": streamer
|
||||||
}
|
}
|
||||||
with torch.no_grad():
|
thread = Thread(target=model.generate, kwargs=gen_kwargs)
|
||||||
generation_output = model.generate(input_ids=input_ids, **gen_kwargs)
|
thread.start()
|
||||||
outputs = generation_output.tolist()[0][len(input_ids[0]):]
|
response = ""
|
||||||
response = tokenizer.decode(outputs, skip_special_tokens=True)
|
print("{}: ".format(model_name), end="")
|
||||||
|
for new_text in streamer:
|
||||||
|
print(new_text, end="", flush=True)
|
||||||
|
response += new_text
|
||||||
|
print()
|
||||||
history = history + [(query, response)]
|
history = history + [(query, response)]
|
||||||
return response, history
|
return history
|
||||||
|
|
||||||
history = []
|
history = []
|
||||||
print("欢迎使用 {} 模型,输入内容即可对话,clear清空对话历史,stop终止程序".format(model_name))
|
print("欢迎使用 {} 模型,输入内容即可对话,clear清空对话历史,stop终止程序".format(model_name))
|
||||||
@ -73,8 +81,7 @@ def main():
|
|||||||
print("History has been removed.")
|
print("History has been removed.")
|
||||||
continue
|
continue
|
||||||
|
|
||||||
response, history = predict(query, history)
|
history = predict_and_print(query, history)
|
||||||
print("{}:".format(model_name), response)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
@ -52,13 +52,12 @@ class AverageMeter:
|
|||||||
|
|
||||||
|
|
||||||
# Avoid runtime error in model.generate(do_sample=True).
|
# Avoid runtime error in model.generate(do_sample=True).
|
||||||
# Borrowed from: https://huggingface.co/THUDM/chatglm-6b/blob/658202d88ac4bb782b99e99ac3adff58b4d0b813/modeling_chatglm.py#L54
|
|
||||||
class InvalidScoreLogitsProcessor(LogitsProcessor):
|
class InvalidScoreLogitsProcessor(LogitsProcessor):
|
||||||
|
|
||||||
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
|
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
|
||||||
if torch.isnan(scores).any() or torch.isinf(scores).any():
|
if torch.isnan(scores).any() or torch.isinf(scores).any():
|
||||||
scores.zero_()
|
scores.zero_()
|
||||||
scores[..., 5] = 5e4
|
scores[:, 0] = 1.0
|
||||||
return scores
|
return scores
|
||||||
|
|
||||||
|
|
||||||
|
@ -3,11 +3,12 @@
|
|||||||
# Usage: python web_demo.py --checkpoint_dir path_to_checkpoint
|
# Usage: python web_demo.py --checkpoint_dir path_to_checkpoint
|
||||||
|
|
||||||
|
|
||||||
import torch
|
|
||||||
import mdtex2html
|
import mdtex2html
|
||||||
import gradio as gr
|
import gradio as gr
|
||||||
|
|
||||||
|
from threading import Thread
|
||||||
from utils import load_pretrained, prepare_infer_args, get_logits_processor
|
from utils import load_pretrained, prepare_infer_args, get_logits_processor
|
||||||
|
from transformers import TextIteratorStreamer
|
||||||
from transformers.utils.versions import require_version
|
from transformers.utils.versions import require_version
|
||||||
|
|
||||||
|
|
||||||
@ -83,6 +84,7 @@ def format_example_ziya(query, history):
|
|||||||
|
|
||||||
|
|
||||||
format_example = format_example_alpaca if data_args.prompt_template == "alpaca" else format_example_ziya
|
format_example = format_example_alpaca if data_args.prompt_template == "alpaca" else format_example_ziya
|
||||||
|
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
||||||
|
|
||||||
|
|
||||||
def predict(input, chatbot, max_length, top_p, temperature, history):
|
def predict(input, chatbot, max_length, top_p, temperature, history):
|
||||||
@ -97,15 +99,17 @@ def predict(input, chatbot, max_length, top_p, temperature, history):
|
|||||||
"num_beams": 1,
|
"num_beams": 1,
|
||||||
"max_length": max_length,
|
"max_length": max_length,
|
||||||
"repetition_penalty": 1.0,
|
"repetition_penalty": 1.0,
|
||||||
"logits_processor": get_logits_processor()
|
"logits_processor": get_logits_processor(),
|
||||||
|
"streamer": streamer
|
||||||
}
|
}
|
||||||
with torch.no_grad():
|
thread = Thread(target=model.generate, kwargs=gen_kwargs)
|
||||||
generation_output = model.generate(input_ids=input_ids, **gen_kwargs)
|
thread.start()
|
||||||
outputs = generation_output.tolist()[0][len(input_ids[0]):]
|
response = ""
|
||||||
response = tokenizer.decode(outputs, skip_special_tokens=True)
|
for new_text in streamer:
|
||||||
history = history + [(input, response)]
|
response += new_text
|
||||||
chatbot[-1] = (parse_text(input), parse_text(response))
|
history = history + [(input, response)]
|
||||||
yield chatbot, history
|
chatbot[-1] = (parse_text(input), parse_text(response))
|
||||||
|
yield chatbot, history
|
||||||
|
|
||||||
|
|
||||||
def reset_user_input():
|
def reset_user_input():
|
||||||
@ -129,7 +133,7 @@ with gr.Blocks() as demo:
|
|||||||
submitBtn = gr.Button("Submit", variant="primary")
|
submitBtn = gr.Button("Submit", variant="primary")
|
||||||
with gr.Column(scale=1):
|
with gr.Column(scale=1):
|
||||||
emptyBtn = gr.Button("Clear History")
|
emptyBtn = gr.Button("Clear History")
|
||||||
max_length = gr.Slider(0, 4096, value=2048, step=1.0, label="Maximum length", interactive=True)
|
max_length = gr.Slider(0, 2048, value=1024, step=1.0, label="Maximum length", interactive=True)
|
||||||
top_p = gr.Slider(0, 1, value=0.7, step=0.01, label="Top P", interactive=True)
|
top_p = gr.Slider(0, 1, value=0.7, step=0.01, label="Top P", interactive=True)
|
||||||
temperature = gr.Slider(0, 1, value=0.95, step=0.01, label="Temperature", interactive=True)
|
temperature = gr.Slider(0, 1, value=0.95, step=0.01, label="Temperature", interactive=True)
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user