mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-12-16 20:00:36 +08:00
modity code structure
This commit is contained in:
78
src/llmtuner/hparams/finetuning_args.py
Normal file
78
src/llmtuner/hparams/finetuning_args.py
Normal file
@@ -0,0 +1,78 @@
|
||||
import json
|
||||
from typing import Literal, Optional
|
||||
from dataclasses import asdict, dataclass, field
|
||||
|
||||
|
||||
@dataclass
|
||||
class FinetuningArguments:
|
||||
"""
|
||||
Arguments pertaining to which techniques we are going to fine-tuning with.
|
||||
"""
|
||||
finetuning_type: Optional[Literal["none", "freeze", "lora", "full"]] = field(
|
||||
default="lora",
|
||||
metadata={"help": "Which fine-tuning method to use."}
|
||||
)
|
||||
num_hidden_layers: Optional[int] = field(
|
||||
default=32,
|
||||
metadata={"help": "Number of decoder blocks in the model. \
|
||||
LLaMA choices: [\"32\", \"40\", \"60\", \"80\"], \
|
||||
BLOOM choices: [\"24\", \"30\", \"70\"], \
|
||||
Falcon choices: [\"32\", \"60\"], \
|
||||
Baichuan choices: [\"32\"]"}
|
||||
)
|
||||
num_layer_trainable: Optional[int] = field(
|
||||
default=3,
|
||||
metadata={"help": "Number of trainable layers for Freeze fine-tuning."}
|
||||
)
|
||||
name_module_trainable: Optional[Literal["mlp", "self_attn", "self_attention"]] = field(
|
||||
default="mlp",
|
||||
metadata={"help": "Name of trainable modules for Freeze fine-tuning. \
|
||||
LLaMA choices: [\"mlp\", \"self_attn\"], \
|
||||
BLOOM & Falcon choices: [\"mlp\", \"self_attention\"], \
|
||||
Baichuan choices: [\"mlp\", \"self_attn\"]"}
|
||||
)
|
||||
lora_rank: Optional[int] = field(
|
||||
default=8,
|
||||
metadata={"help": "The intrinsic dimension for LoRA fine-tuning."}
|
||||
)
|
||||
lora_alpha: Optional[float] = field(
|
||||
default=32.0,
|
||||
metadata={"help": "The scale factor for LoRA fine-tuning (similar with the learning rate)."}
|
||||
)
|
||||
lora_dropout: Optional[float] = field(
|
||||
default=0.1,
|
||||
metadata={"help": "Dropout rate for the LoRA fine-tuning."}
|
||||
)
|
||||
lora_target: Optional[str] = field(
|
||||
default="q_proj,v_proj",
|
||||
metadata={"help": "Name(s) of target modules to apply LoRA. Use comma to separate multiple modules. \
|
||||
LLaMA choices: [\"q_proj\", \"k_proj\", \"v_proj\", \"o_proj\", \"gate_proj\", \"up_proj\", \"down_proj\"], \
|
||||
BLOOM & Falcon choices: [\"query_key_value\", \"self_attention.dense\", \"mlp.dense\"], \
|
||||
Baichuan choices: [\"W_pack\", \"o_proj\", \"gate_proj\", \"up_proj\", \"down_proj\"]"}
|
||||
)
|
||||
|
||||
def __post_init__(self):
|
||||
if isinstance(self.lora_target, str): # support custom target modules/layers of LoRA
|
||||
self.lora_target = [target.strip() for target in self.lora_target.split(",")]
|
||||
|
||||
if self.num_layer_trainable > 0: # fine-tuning the last n layers if num_layer_trainable > 0
|
||||
trainable_layer_ids = [self.num_hidden_layers - k - 1 for k in range(self.num_layer_trainable)]
|
||||
else: # fine-tuning the first n layers if num_layer_trainable < 0
|
||||
trainable_layer_ids = [k for k in range(-self.num_layer_trainable)]
|
||||
|
||||
self.trainable_layers = ["{:d}.{}".format(idx, self.name_module_trainable) for idx in trainable_layer_ids]
|
||||
|
||||
assert self.finetuning_type in ["none", "freeze", "lora", "full"], "Invalid fine-tuning method."
|
||||
|
||||
def save_to_json(self, json_path: str):
|
||||
"""Saves the content of this instance in JSON format inside `json_path`."""
|
||||
json_string = json.dumps(asdict(self), indent=2, sort_keys=True) + "\n"
|
||||
with open(json_path, "w", encoding="utf-8") as f:
|
||||
f.write(json_string)
|
||||
|
||||
@classmethod
|
||||
def load_from_json(cls, json_path: str):
|
||||
"""Creates an instance from the content of `json_path`."""
|
||||
with open(json_path, "r", encoding="utf-8") as f:
|
||||
text = f.read()
|
||||
return cls(**json.loads(text))
|
||||
Reference in New Issue
Block a user