mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-12-14 19:06:26 +08:00
@@ -1,6 +1,6 @@
|
||||
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team.
|
||||
#
|
||||
# This code is inspired by HuggingFace's TRL library.
|
||||
# This code is inspired by the HuggingFace's TRL library.
|
||||
# https://github.com/huggingface/trl/blob/v0.8.0/trl/trainer/dpo_trainer.py
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
@@ -15,6 +15,7 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import os
|
||||
import warnings
|
||||
from collections import defaultdict
|
||||
from contextlib import nullcontext
|
||||
@@ -28,7 +29,7 @@ from trl import DPOTrainer
|
||||
from trl.trainer import disable_dropout_in_model
|
||||
|
||||
from ...extras.constants import IGNORE_INDEX
|
||||
from ..trainer_utils import create_custom_optimzer, create_custom_scheduler, get_batch_logps
|
||||
from ..trainer_utils import convert_pissa_adapter, create_custom_optimzer, create_custom_scheduler, get_batch_logps
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
@@ -91,6 +92,9 @@ class CustomDPOTrainer(DPOTrainer):
|
||||
self.ref_model = self.accelerator.prepare_model(self.ref_model, evaluation_mode=True)
|
||||
self.ref_model.eval()
|
||||
|
||||
if finetuning_args.pissa_convert:
|
||||
self.save_model(os.path.join(self.args.output_dir, "pissa_init"))
|
||||
|
||||
if finetuning_args.use_badam:
|
||||
from badam import clip_grad_norm_for_sparse_tensor
|
||||
|
||||
@@ -109,8 +113,11 @@ class CustomDPOTrainer(DPOTrainer):
|
||||
|
||||
def _save(self, output_dir: Optional[str] = None, state_dict: Optional[Dict[str, "torch.Tensor"]] = None) -> None:
|
||||
super()._save(output_dir, state_dict)
|
||||
output_dir = output_dir if output_dir is not None else self.args.output_dir
|
||||
if self.finetuning_args.pissa_convert:
|
||||
convert_pissa_adapter(output_dir, state_dict, self.accelerator, self.model, self.args)
|
||||
|
||||
if self.processor is not None:
|
||||
output_dir = output_dir if output_dir is not None else self.args.output_dir
|
||||
getattr(self.processor, "image_processor").save_pretrained(output_dir)
|
||||
|
||||
def odds_ratio_loss(self, chosen_logps: "torch.Tensor", rejected_logps: "torch.Tensor") -> "torch.Tensor":
|
||||
|
||||
@@ -12,13 +12,14 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import os
|
||||
from types import MethodType
|
||||
from typing import TYPE_CHECKING, Dict, Optional
|
||||
|
||||
from transformers import Trainer
|
||||
|
||||
from ...extras.logging import get_logger
|
||||
from ..trainer_utils import create_custom_optimzer, create_custom_scheduler
|
||||
from ..trainer_utils import convert_pissa_adapter, create_custom_optimzer, create_custom_scheduler
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
@@ -42,6 +43,10 @@ class CustomTrainer(Trainer):
|
||||
super().__init__(**kwargs)
|
||||
self.finetuning_args = finetuning_args
|
||||
self.processor = processor
|
||||
|
||||
if finetuning_args.pissa_convert:
|
||||
self.save_model(os.path.join(self.args.output_dir, "pissa_init"))
|
||||
|
||||
if finetuning_args.use_badam:
|
||||
from badam import clip_grad_norm_for_sparse_tensor
|
||||
|
||||
@@ -60,6 +65,9 @@ class CustomTrainer(Trainer):
|
||||
|
||||
def _save(self, output_dir: Optional[str] = None, state_dict: Optional[Dict[str, "torch.Tensor"]] = None) -> None:
|
||||
super()._save(output_dir, state_dict)
|
||||
output_dir = output_dir if output_dir is not None else self.args.output_dir
|
||||
if self.finetuning_args.pissa_convert:
|
||||
convert_pissa_adapter(output_dir, state_dict, self.accelerator, self.model, self.args)
|
||||
|
||||
if self.processor is not None:
|
||||
output_dir = output_dir if output_dir is not None else self.args.output_dir
|
||||
getattr(self.processor, "image_processor").save_pretrained(output_dir)
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team.
|
||||
#
|
||||
# This code is inspired by HuggingFace's transformers library.
|
||||
# This code is inspired by the HuggingFace's transformers library.
|
||||
# https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/trainer_seq2seq.py
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
@@ -26,7 +26,7 @@ from transformers import Seq2SeqTrainer
|
||||
|
||||
from ...extras.constants import IGNORE_INDEX
|
||||
from ...extras.logging import get_logger
|
||||
from ..trainer_utils import create_custom_optimzer, create_custom_scheduler
|
||||
from ..trainer_utils import convert_pissa_adapter, create_custom_optimzer, create_custom_scheduler
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
@@ -51,6 +51,10 @@ class CustomSeq2SeqTrainer(Seq2SeqTrainer):
|
||||
super().__init__(**kwargs)
|
||||
self.finetuning_args = finetuning_args
|
||||
self.processor = processor
|
||||
|
||||
if finetuning_args.pissa_convert:
|
||||
self.save_model(os.path.join(self.args.output_dir, "pissa_init"))
|
||||
|
||||
if finetuning_args.use_badam:
|
||||
from badam import clip_grad_norm_for_sparse_tensor
|
||||
|
||||
@@ -69,8 +73,11 @@ class CustomSeq2SeqTrainer(Seq2SeqTrainer):
|
||||
|
||||
def _save(self, output_dir: Optional[str] = None, state_dict: Optional[Dict[str, "torch.Tensor"]] = None) -> None:
|
||||
super()._save(output_dir, state_dict)
|
||||
output_dir = output_dir if output_dir is not None else self.args.output_dir
|
||||
if self.finetuning_args.pissa_convert:
|
||||
convert_pissa_adapter(output_dir, state_dict, self.accelerator, self.model, self.args)
|
||||
|
||||
if self.processor is not None:
|
||||
output_dir = output_dir if output_dir is not None else self.args.output_dir
|
||||
getattr(self.processor, "image_processor").save_pretrained(output_dir)
|
||||
|
||||
def prediction_step(
|
||||
|
||||
@@ -1,9 +1,9 @@
|
||||
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team.
|
||||
#
|
||||
# This code is inspired by the GaLore's implementation: https://github.com/jiaweizzhao/GaLore
|
||||
# and the LoRA+'s implementation: https://github.com/nikhil-ghosh-berkeley/loraplus
|
||||
# and the BAdam's implementation: https://github.com/Ledzy/BAdam
|
||||
# and the TRL's implementation: https://github.com/huggingface/trl
|
||||
# This code is inspired by the original GaLore's implementation: https://github.com/jiaweizzhao/GaLore
|
||||
# and the original LoRA+'s implementation: https://github.com/nikhil-ghosh-berkeley/loraplus
|
||||
# and the original BAdam's implementation: https://github.com/Ledzy/BAdam
|
||||
# and the HuggingFace's TRL library: https://github.com/huggingface/trl
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -17,9 +17,11 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import os
|
||||
from typing import TYPE_CHECKING, Callable, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
from peft import PeftModel
|
||||
from transformers import Trainer
|
||||
from transformers.optimization import get_scheduler
|
||||
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
|
||||
@@ -37,6 +39,7 @@ if is_galore_available():
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from accelerate import Accelerator
|
||||
from transformers import PreTrainedModel, Seq2SeqTrainingArguments
|
||||
from trl import AutoModelForCausalLMWithValueHead
|
||||
|
||||
@@ -171,6 +174,49 @@ def create_reward_model(
|
||||
return reward_model
|
||||
|
||||
|
||||
def convert_pissa_adapter(
|
||||
output_dir: str,
|
||||
state_dict: Dict[str, "torch.Tensor"],
|
||||
accelerator: "Accelerator",
|
||||
model: "PreTrainedModel",
|
||||
training_args: "Seq2SeqTrainingArguments",
|
||||
) -> None:
|
||||
r"""
|
||||
Converts the PiSSA adapter to a LoRA adapter.
|
||||
"""
|
||||
pissa_init_dir = os.path.join(training_args.output_dir, "pissa_init")
|
||||
pissa_backup_dir = os.path.join(output_dir, "pissa_backup")
|
||||
if output_dir == pissa_init_dir:
|
||||
logger.info("Initial PiSSA adatper will be saved at: {}.".format(pissa_init_dir))
|
||||
unwrapped_model = accelerator.unwrap_model(model)
|
||||
if isinstance(unwrapped_model, PeftModel):
|
||||
init_lora_weights = getattr(unwrapped_model.peft_config["default"], "init_lora_weights")
|
||||
setattr(unwrapped_model.peft_config["default"], "init_lora_weights", True)
|
||||
unwrapped_model.save_pretrained(
|
||||
output_dir,
|
||||
state_dict=state_dict,
|
||||
safe_serialization=training_args.save_safetensors,
|
||||
)
|
||||
setattr(unwrapped_model.peft_config["default"], "init_lora_weights", init_lora_weights)
|
||||
elif output_dir == training_args.output_dir: # at the end of training
|
||||
logger.info("Converted PiSSA adapter will be saved at: {}.".format(output_dir))
|
||||
unwrapped_model = accelerator.unwrap_model(model)
|
||||
if isinstance(unwrapped_model, PeftModel): # backup the pissa adapter for further use
|
||||
unwrapped_model.save_pretrained(
|
||||
pissa_backup_dir,
|
||||
state_dict=state_dict,
|
||||
safe_serialization=training_args.save_safetensors,
|
||||
)
|
||||
unwrapped_model.save_pretrained(
|
||||
output_dir,
|
||||
state_dict=state_dict,
|
||||
safe_serialization=training_args.save_safetensors,
|
||||
convert_pissa_to_lora=pissa_init_dir,
|
||||
)
|
||||
unwrapped_model.load_adapter(pissa_backup_dir, "default", is_trainable=True)
|
||||
unwrapped_model.set_adapter("default")
|
||||
|
||||
|
||||
def _get_decay_parameter_names(model: "PreTrainedModel") -> List[str]:
|
||||
r"""
|
||||
Returns a list of names of parameters with weight decay. (weights in non-layernorm layers)
|
||||
|
||||
Reference in New Issue
Block a user