mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-12-14 19:06:26 +08:00
@@ -108,6 +108,18 @@ class LoraArguments:
|
||||
default=False,
|
||||
metadata={"help": "Whether or not to use the weight-decomposed lora method (DoRA)."},
|
||||
)
|
||||
pissa_init: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "Whether or not to initialize a PiSSA adapter."},
|
||||
)
|
||||
pissa_iter: int = field(
|
||||
default=4,
|
||||
metadata={"help": "The number of iteration steps performed by FSVD in PiSSA. Use -1 to disable it."},
|
||||
)
|
||||
pissa_convert: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "Whether or not to convert the PiSSA adapter to a normal LoRA adapter."},
|
||||
)
|
||||
create_new_adapter: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "Whether or not to create a new adapter with randomly initialized weight."},
|
||||
@@ -340,7 +352,7 @@ class FinetuningArguments(FreezeArguments, LoraArguments, RLHFArguments, GaloreA
|
||||
self.additional_target: Optional[List[str]] = split_arg(self.additional_target)
|
||||
self.galore_target: List[str] = split_arg(self.galore_target)
|
||||
self.freeze_vision_tower = self.freeze_vision_tower or self.train_mm_proj_only
|
||||
self.use_ref_model = self.pref_loss not in ["orpo", "simpo"]
|
||||
self.use_ref_model = (self.stage == "dpo" and self.pref_loss not in ["orpo", "simpo"])
|
||||
|
||||
assert self.finetuning_type in ["lora", "freeze", "full"], "Invalid fine-tuning method."
|
||||
assert self.ref_model_quantization_bit in [None, 8, 4], "We only accept 4-bit or 8-bit quantization."
|
||||
@@ -367,5 +379,11 @@ class FinetuningArguments(FreezeArguments, LoraArguments, RLHFArguments, GaloreA
|
||||
if self.loraplus_lr_ratio is not None and self.finetuning_type != "lora":
|
||||
raise ValueError("`loraplus_lr_ratio` is only valid for LoRA training.")
|
||||
|
||||
if self.pissa_convert and self.finetuning_type != "lora":
|
||||
raise ValueError("`pissa_convert` is only valid for LoRA training.")
|
||||
|
||||
if self.pissa_convert and (self.stage in ["rm", "ppo", "kto"] or self.use_ref_model):
|
||||
raise ValueError("Cannot use PiSSA for current training stage.")
|
||||
|
||||
if self.train_mm_proj_only and self.finetuning_type != "full":
|
||||
raise ValueError("`train_mm_proj_only` is only valid for full training.")
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team.
|
||||
#
|
||||
# This code is inspired by HuggingFace's transformers library.
|
||||
# This code is inspired by the HuggingFace's transformers library.
|
||||
# https://github.com/huggingface/transformers/blob/v4.40.0/examples/pytorch/language-modeling/run_clm.py
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
@@ -45,6 +45,10 @@ class ModelArguments:
|
||||
)
|
||||
},
|
||||
)
|
||||
adapter_folder: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "The folder containing the adapter weights to load."},
|
||||
)
|
||||
cache_dir: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "Where to store the pre-trained models downloaded from huggingface.co or modelscope.cn."},
|
||||
@@ -150,7 +154,7 @@ class ModelArguments:
|
||||
metadata={"help": "Whether or not to disable CUDA graph in the vLLM engine."},
|
||||
)
|
||||
vllm_max_lora_rank: int = field(
|
||||
default=8,
|
||||
default=32,
|
||||
metadata={"help": "Maximum rank of all LoRAs in the vLLM engine."},
|
||||
)
|
||||
offload_folder: str = field(
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team.
|
||||
#
|
||||
# This code is inspired by HuggingFace's transformers library.
|
||||
# This code is inspired by the HuggingFace's transformers library.
|
||||
# https://github.com/huggingface/transformers/blob/v4.40.0/examples/pytorch/language-modeling/run_clm.py
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
@@ -90,6 +90,9 @@ def _verify_model_args(model_args: "ModelArguments", finetuning_args: "Finetunin
|
||||
if finetuning_args.finetuning_type != "lora":
|
||||
raise ValueError("Quantization is only compatible with the LoRA method.")
|
||||
|
||||
if finetuning_args.use_pissa:
|
||||
raise ValueError("Please use scripts/pissa_init.py for quantized PiSSA.")
|
||||
|
||||
if model_args.resize_vocab:
|
||||
raise ValueError("Cannot resize embedding layers of a quantized model.")
|
||||
|
||||
|
||||
Reference in New Issue
Block a user