mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-12-30 02:30:35 +08:00
[breaking change] refactor data pipeline (#6901)
* refactor data * rename file Former-commit-id: 7a1a4ce6451cb782573d0bd9dd27a5e443e3a18b
This commit is contained in:
17
src/llamafactory/data/processor/__init__.py
Normal file
17
src/llamafactory/data/processor/__init__.py
Normal file
@@ -0,0 +1,17 @@
|
||||
from .feedback import FeedbackDatasetProcessor
|
||||
from .pairwise import PairwiseDatasetProcessor
|
||||
from .pretrain import PretrainDatasetProcessor
|
||||
from .processor_utils import DatasetProcessor
|
||||
from .supervised import PackedSupervisedDatasetProcessor, SupervisedDatasetProcessor
|
||||
from .unsupervised import UnsupervisedDatasetProcessor
|
||||
|
||||
|
||||
__all__ = [
|
||||
"DatasetProcessor",
|
||||
"FeedbackDatasetProcessor",
|
||||
"PairwiseDatasetProcessor",
|
||||
"PretrainDatasetProcessor",
|
||||
"PackedSupervisedDatasetProcessor",
|
||||
"SupervisedDatasetProcessor",
|
||||
"UnsupervisedDatasetProcessor",
|
||||
]
|
||||
129
src/llamafactory/data/processor/feedback.py
Normal file
129
src/llamafactory/data/processor/feedback.py
Normal file
@@ -0,0 +1,129 @@
|
||||
# Copyright 2025 the LlamaFactory team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from collections import defaultdict
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple
|
||||
|
||||
from ...extras import logging
|
||||
from ...extras.constants import IGNORE_INDEX
|
||||
from .processor_utils import DatasetProcessor, infer_seqlen
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from ..mm_plugin import AudioInput, ImageInput, VideoInput
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
class FeedbackDatasetProcessor(DatasetProcessor):
|
||||
def _encode_data_example(
|
||||
self,
|
||||
prompt: Sequence[Dict[str, str]],
|
||||
response: Sequence[Dict[str, str]],
|
||||
kl_response: Sequence[Dict[str, str]],
|
||||
system: Optional[str],
|
||||
tools: Optional[str],
|
||||
images: Sequence["ImageInput"],
|
||||
videos: Sequence["VideoInput"],
|
||||
audios: Sequence["AudioInput"],
|
||||
) -> Tuple[List[int], List[int], List[int], List[int], bool]:
|
||||
if response[0]["content"]: # desired example
|
||||
kto_tag = True
|
||||
messages = prompt + [response[0]]
|
||||
else: # undesired example
|
||||
kto_tag = False
|
||||
messages = prompt + [response[1]]
|
||||
|
||||
if kl_response[0]["content"]:
|
||||
kl_messages = prompt + [kl_response[0]]
|
||||
else:
|
||||
kl_messages = prompt + [kl_response[1]]
|
||||
|
||||
messages = self.template.mm_plugin.process_messages(messages, images, videos, audios, self.processor)
|
||||
kl_messages = self.template.mm_plugin.process_messages(kl_messages, images, videos, audios, self.processor)
|
||||
prompt_ids, response_ids = self.template.encode_oneturn(self.tokenizer, messages, system, tools)
|
||||
kl_prompt_ids, kl_response_ids = self.template.encode_oneturn(self.tokenizer, kl_messages, system, tools)
|
||||
|
||||
if self.template.efficient_eos:
|
||||
response_ids += [self.tokenizer.eos_token_id]
|
||||
kl_response_ids += [self.tokenizer.eos_token_id]
|
||||
|
||||
prompt_ids, _ = self.template.mm_plugin.process_token_ids(
|
||||
prompt_ids, None, images, videos, audios, self.tokenizer, self.processor
|
||||
)
|
||||
kl_prompt_ids, _ = self.template.mm_plugin.process_token_ids(
|
||||
kl_prompt_ids, None, images, videos, audios, self.tokenizer, self.processor
|
||||
)
|
||||
|
||||
source_len, target_len = infer_seqlen(len(prompt_ids), len(response_ids), self.data_args.cutoff_len)
|
||||
prompt_ids = prompt_ids[:source_len]
|
||||
response_ids = response_ids[:target_len]
|
||||
kl_source_len, kl_target_len = infer_seqlen(
|
||||
len(kl_prompt_ids), len(kl_response_ids), self.data_args.cutoff_len
|
||||
)
|
||||
kl_prompt_ids = kl_prompt_ids[:kl_source_len]
|
||||
kl_response_ids = kl_response_ids[:kl_target_len]
|
||||
|
||||
input_ids = prompt_ids + response_ids
|
||||
labels = [IGNORE_INDEX] * source_len + response_ids
|
||||
kl_input_ids = kl_prompt_ids + kl_response_ids
|
||||
kl_labels = [IGNORE_INDEX] * kl_source_len + kl_response_ids
|
||||
return input_ids, labels, kl_input_ids, kl_labels, kto_tag
|
||||
|
||||
def preprocess_dataset(self, examples: Dict[str, List[Any]]) -> Dict[str, List[Any]]:
|
||||
# create unrelated input-output pairs for estimating the KL term by flipping the matched pairs
|
||||
kl_response = examples["_response"][::-1]
|
||||
model_inputs = defaultdict(list)
|
||||
for i in range(len(examples["_prompt"])):
|
||||
if len(examples["_prompt"][i]) % 2 != 1 or len(examples["_response"][i]) < 2:
|
||||
logger.warning_rank0(
|
||||
"Dropped invalid example: {}".format(examples["_prompt"][i] + examples["_response"][i])
|
||||
)
|
||||
continue
|
||||
|
||||
input_ids, labels, kl_input_ids, kl_labels, kto_tag = self._encode_data_example(
|
||||
prompt=examples["_prompt"][i],
|
||||
response=examples["_response"][i],
|
||||
kl_response=kl_response[i],
|
||||
system=examples["_system"][i],
|
||||
tools=examples["_tools"][i],
|
||||
images=examples["_images"][i] or [],
|
||||
videos=examples["_videos"][i] or [],
|
||||
audios=examples["_audios"][i] or [],
|
||||
)
|
||||
model_inputs["input_ids"].append(input_ids)
|
||||
model_inputs["attention_mask"].append([1] * len(input_ids))
|
||||
model_inputs["labels"].append(labels)
|
||||
model_inputs["kl_input_ids"].append(kl_input_ids)
|
||||
model_inputs["kl_attention_mask"].append([1] * len(kl_input_ids))
|
||||
model_inputs["kl_labels"].append(kl_labels)
|
||||
model_inputs["kto_tags"].append(kto_tag)
|
||||
model_inputs["images"].append(examples["_images"][i])
|
||||
model_inputs["videos"].append(examples["_videos"][i])
|
||||
model_inputs["audios"].append(examples["_audios"][i])
|
||||
|
||||
desirable_num = sum([1 for tag in model_inputs["kto_tags"] if tag])
|
||||
undesirable_num = len(model_inputs["kto_tags"]) - desirable_num
|
||||
if desirable_num == 0 or undesirable_num == 0:
|
||||
logger.warning_rank0("Your dataset only has one preference type.")
|
||||
|
||||
return model_inputs
|
||||
|
||||
def print_data_example(self, example: Dict[str, List[int]]) -> None:
|
||||
valid_labels = list(filter(lambda x: x != IGNORE_INDEX, example["labels"]))
|
||||
print("input_ids:\n{}".format(example["input_ids"]))
|
||||
print("inputs:\n{}".format(self.tokenizer.decode(example["input_ids"], skip_special_tokens=False)))
|
||||
print("label_ids:\n{}".format(example["labels"]))
|
||||
print(f"labels:\n{self.tokenizer.decode(valid_labels, skip_special_tokens=False)}")
|
||||
118
src/llamafactory/data/processor/pairwise.py
Normal file
118
src/llamafactory/data/processor/pairwise.py
Normal file
@@ -0,0 +1,118 @@
|
||||
# Copyright 2025 the LlamaFactory team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from collections import defaultdict
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple
|
||||
|
||||
from ...extras import logging
|
||||
from ...extras.constants import IGNORE_INDEX
|
||||
from .processor_utils import DatasetProcessor, infer_seqlen
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from ..mm_plugin import AudioInput, ImageInput, VideoInput
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
class PairwiseDatasetProcessor(DatasetProcessor):
|
||||
def _encode_data_example(
|
||||
self,
|
||||
prompt: Sequence[Dict[str, str]],
|
||||
response: Sequence[Dict[str, str]],
|
||||
system: Optional[str],
|
||||
tools: Optional[str],
|
||||
images: Sequence["ImageInput"],
|
||||
videos: Sequence["VideoInput"],
|
||||
audios: Sequence["AudioInput"],
|
||||
) -> Tuple[List[int], List[int], List[int], List[int]]:
|
||||
chosen_messages = self.template.mm_plugin.process_messages(
|
||||
prompt + [response[0]], images, videos, audios, self.processor
|
||||
)
|
||||
rejected_messages = self.template.mm_plugin.process_messages(
|
||||
prompt + [response[1]], images, videos, audios, self.processor
|
||||
)
|
||||
prompt_ids, chosen_ids = self.template.encode_oneturn(self.tokenizer, chosen_messages, system, tools)
|
||||
_, rejected_ids = self.template.encode_oneturn(self.tokenizer, rejected_messages, system, tools)
|
||||
|
||||
if self.template.efficient_eos:
|
||||
chosen_ids += [self.tokenizer.eos_token_id]
|
||||
rejected_ids += [self.tokenizer.eos_token_id]
|
||||
|
||||
prompt_ids, _ = self.template.mm_plugin.process_token_ids(
|
||||
prompt_ids, None, images, videos, audios, self.tokenizer, self.processor
|
||||
)
|
||||
# consider the response is more important
|
||||
source_len, target_len = infer_seqlen(
|
||||
len(prompt_ids), max(len(chosen_ids), len(rejected_ids)), self.data_args.cutoff_len
|
||||
)
|
||||
prompt_ids = prompt_ids[:source_len]
|
||||
chosen_ids = chosen_ids[:target_len]
|
||||
rejected_ids = rejected_ids[:target_len]
|
||||
|
||||
chosen_input_ids = prompt_ids + chosen_ids
|
||||
chosen_labels = [IGNORE_INDEX] * source_len + chosen_ids
|
||||
rejected_input_ids = prompt_ids + rejected_ids
|
||||
rejected_labels = [IGNORE_INDEX] * source_len + rejected_ids
|
||||
return chosen_input_ids, chosen_labels, rejected_input_ids, rejected_labels
|
||||
|
||||
def preprocess_dataset(self, examples: Dict[str, List[Any]]) -> Dict[str, List[Any]]:
|
||||
# build input pairs with format `<bos> X`, `Y1 <eos>` and `Y2 <eos>`
|
||||
model_inputs = defaultdict(list)
|
||||
for i in range(len(examples["_prompt"])):
|
||||
if len(examples["_prompt"][i]) % 2 != 1 or len(examples["_response"][i]) < 2:
|
||||
logger.warning_rank0(
|
||||
"Dropped invalid example: {}".format(examples["_prompt"][i] + examples["_response"][i])
|
||||
)
|
||||
continue
|
||||
|
||||
chosen_input_ids, chosen_labels, rejected_input_ids, rejected_labels = self._encode_data_example(
|
||||
prompt=examples["_prompt"][i],
|
||||
response=examples["_response"][i],
|
||||
system=examples["_system"][i],
|
||||
tools=examples["_tools"][i],
|
||||
images=examples["_images"][i] or [],
|
||||
videos=examples["_videos"][i] or [],
|
||||
audios=examples["_audios"][i] or [],
|
||||
)
|
||||
model_inputs["chosen_input_ids"].append(chosen_input_ids)
|
||||
model_inputs["chosen_attention_mask"].append([1] * len(chosen_input_ids))
|
||||
model_inputs["chosen_labels"].append(chosen_labels)
|
||||
model_inputs["rejected_input_ids"].append(rejected_input_ids)
|
||||
model_inputs["rejected_attention_mask"].append([1] * len(rejected_input_ids))
|
||||
model_inputs["rejected_labels"].append(rejected_labels)
|
||||
model_inputs["images"].append(examples["_images"][i])
|
||||
model_inputs["videos"].append(examples["_videos"][i])
|
||||
model_inputs["audios"].append(examples["_audios"][i])
|
||||
|
||||
return model_inputs
|
||||
|
||||
def print_data_example(self, example: Dict[str, List[int]]) -> None:
|
||||
valid_chosen_labels = list(filter(lambda x: x != IGNORE_INDEX, example["chosen_labels"]))
|
||||
valid_rejected_labels = list(filter(lambda x: x != IGNORE_INDEX, example["rejected_labels"]))
|
||||
print("chosen_input_ids:\n{}".format(example["chosen_input_ids"]))
|
||||
print(
|
||||
"chosen_inputs:\n{}".format(self.tokenizer.decode(example["chosen_input_ids"], skip_special_tokens=False))
|
||||
)
|
||||
print("chosen_label_ids:\n{}".format(example["chosen_labels"]))
|
||||
print(f"chosen_labels:\n{self.tokenizer.decode(valid_chosen_labels, skip_special_tokens=False)}")
|
||||
print("rejected_input_ids:\n{}".format(example["rejected_input_ids"]))
|
||||
print(
|
||||
"rejected_inputs:\n{}".format(
|
||||
self.tokenizer.decode(example["rejected_input_ids"], skip_special_tokens=False)
|
||||
)
|
||||
)
|
||||
print("rejected_label_ids:\n{}".format(example["rejected_labels"]))
|
||||
print(f"rejected_labels:\n{self.tokenizer.decode(valid_rejected_labels, skip_special_tokens=False)}")
|
||||
57
src/llamafactory/data/processor/pretrain.py
Normal file
57
src/llamafactory/data/processor/pretrain.py
Normal file
@@ -0,0 +1,57 @@
|
||||
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team.
|
||||
#
|
||||
# This code is inspired by the HuggingFace's transformers library.
|
||||
# https://github.com/huggingface/transformers/blob/v4.40.0/examples/pytorch/language-modeling/run_clm.py
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from dataclasses import dataclass
|
||||
from itertools import chain
|
||||
from typing import Any, Dict, List
|
||||
|
||||
from .processor_utils import DatasetProcessor
|
||||
|
||||
|
||||
@dataclass
|
||||
class PretrainDatasetProcessor(DatasetProcessor):
|
||||
def preprocess_dataset(self, examples: Dict[str, List[Any]]) -> Dict[str, List[Any]]:
|
||||
# build grouped texts with format `X1 X2 X3 ...` if packing is enabled
|
||||
eos_token = "<|end_of_text|>" if self.data_args.template == "llama3" else self.tokenizer.eos_token
|
||||
text_examples = [messages[0]["content"] + eos_token for messages in examples["_prompt"]]
|
||||
|
||||
if not self.data_args.packing:
|
||||
if getattr(self.tokenizer, "add_bos_token", False):
|
||||
text_examples = [self.tokenizer.bos_token + example for example in text_examples]
|
||||
|
||||
result = self.tokenizer(
|
||||
text_examples, add_special_tokens=False, truncation=True, max_length=self.data_args.cutoff_len
|
||||
)
|
||||
else:
|
||||
tokenized_examples = self.tokenizer(text_examples, add_special_tokens=False)
|
||||
concatenated_examples = {k: list(chain(*tokenized_examples[k])) for k in tokenized_examples.keys()}
|
||||
total_length = len(concatenated_examples[list(concatenated_examples.keys())[0]])
|
||||
block_size = self.data_args.cutoff_len
|
||||
total_length = (total_length // block_size) * block_size
|
||||
result = {
|
||||
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
|
||||
for k, t in concatenated_examples.items()
|
||||
}
|
||||
if getattr(self.tokenizer, "add_bos_token", False):
|
||||
for i in range(len(result["input_ids"])):
|
||||
result["input_ids"][i][0] = self.tokenizer.bos_token_id
|
||||
|
||||
return result
|
||||
|
||||
def print_data_example(self, example: Dict[str, List[int]]) -> None:
|
||||
print("input_ids:\n{}".format(example["input_ids"]))
|
||||
print("inputs:\n{}".format(self.tokenizer.decode(example["input_ids"], skip_special_tokens=False)))
|
||||
100
src/llamafactory/data/processor/processor_utils.py
Normal file
100
src/llamafactory/data/processor/processor_utils.py
Normal file
@@ -0,0 +1,100 @@
|
||||
# Copyright 2025 the LlamaFactory team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import bisect
|
||||
from abc import ABC, abstractmethod
|
||||
from dataclasses import dataclass
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import PreTrainedTokenizer, ProcessorMixin
|
||||
|
||||
from ...hparams import DataArguments
|
||||
from ..template import Template
|
||||
|
||||
|
||||
@dataclass
|
||||
class DatasetProcessor(ABC):
|
||||
r"""
|
||||
A class for data processors.
|
||||
"""
|
||||
|
||||
template: "Template"
|
||||
tokenizer: "PreTrainedTokenizer"
|
||||
processor: Optional["ProcessorMixin"]
|
||||
data_args: "DataArguments"
|
||||
|
||||
@abstractmethod
|
||||
def preprocess_dataset(self, examples: Dict[str, List[Any]]) -> Dict[str, List[Any]]:
|
||||
r"""
|
||||
Builds model inputs from the examples.
|
||||
"""
|
||||
...
|
||||
|
||||
@abstractmethod
|
||||
def print_data_example(self, example: Dict[str, List[int]]) -> None:
|
||||
r"""
|
||||
Print a data example to stdout.
|
||||
"""
|
||||
...
|
||||
|
||||
|
||||
def search_for_fit(numbers: Sequence[int], capacity: int) -> int:
|
||||
r"""
|
||||
Finds the index of largest number that fits into the knapsack with the given capacity.
|
||||
"""
|
||||
index = bisect.bisect(numbers, capacity)
|
||||
return -1 if index == 0 else (index - 1)
|
||||
|
||||
|
||||
def greedy_knapsack(numbers: List[int], capacity: int) -> List[List[int]]:
|
||||
r"""
|
||||
An efficient greedy algorithm with binary search for the knapsack problem.
|
||||
"""
|
||||
numbers.sort() # sort numbers in ascending order for binary search
|
||||
knapsacks = []
|
||||
|
||||
while numbers:
|
||||
current_knapsack = []
|
||||
remaining_capacity = capacity
|
||||
|
||||
while True:
|
||||
index = search_for_fit(numbers, remaining_capacity)
|
||||
if index == -1:
|
||||
break # no more numbers fit in this knapsack
|
||||
|
||||
remaining_capacity -= numbers[index] # update the remaining capacity
|
||||
current_knapsack.append(numbers.pop(index)) # add the number to knapsack
|
||||
|
||||
knapsacks.append(current_knapsack)
|
||||
|
||||
return knapsacks
|
||||
|
||||
|
||||
def infer_seqlen(source_len: int, target_len: int, cutoff_len: int) -> Tuple[int, int]:
|
||||
r"""
|
||||
Computes the real sequence length after truncation by the cutoff_len.
|
||||
"""
|
||||
if target_len * 2 < cutoff_len: # truncate source
|
||||
max_target_len = cutoff_len
|
||||
elif source_len * 2 < cutoff_len: # truncate target
|
||||
max_target_len = cutoff_len - source_len
|
||||
else: # truncate both
|
||||
max_target_len = int(cutoff_len * (target_len / (source_len + target_len)))
|
||||
|
||||
new_target_len = min(max_target_len, target_len)
|
||||
max_source_len = max(cutoff_len - new_target_len, 0)
|
||||
new_source_len = min(max_source_len, source_len)
|
||||
return new_source_len, new_target_len
|
||||
200
src/llamafactory/data/processor/supervised.py
Normal file
200
src/llamafactory/data/processor/supervised.py
Normal file
@@ -0,0 +1,200 @@
|
||||
# Copyright 2025 the LlamaFactory team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from collections import defaultdict
|
||||
from dataclasses import dataclass
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple
|
||||
|
||||
from ...extras import logging
|
||||
from ...extras.constants import IGNORE_INDEX
|
||||
from .processor_utils import DatasetProcessor, greedy_knapsack, infer_seqlen
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from ..mm_plugin import AudioInput, ImageInput, VideoInput
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
@dataclass
|
||||
class SupervisedDatasetProcessor(DatasetProcessor):
|
||||
def _encode_data_example(
|
||||
self,
|
||||
prompt: Sequence[Dict[str, str]],
|
||||
response: Sequence[Dict[str, str]],
|
||||
system: Optional[str],
|
||||
tools: Optional[str],
|
||||
images: Sequence["ImageInput"],
|
||||
videos: Sequence["VideoInput"],
|
||||
audios: Sequence["AudioInput"],
|
||||
) -> Tuple[List[int], List[int]]:
|
||||
messages = self.template.mm_plugin.process_messages(prompt + response, images, videos, audios, self.processor)
|
||||
input_ids, labels = self.template.mm_plugin.process_token_ids(
|
||||
[], [], images, videos, audios, self.tokenizer, self.processor
|
||||
)
|
||||
encoded_pairs = self.template.encode_multiturn(self.tokenizer, messages, system, tools)
|
||||
total_length = len(input_ids) + (1 if self.template.efficient_eos else 0)
|
||||
if self.data_args.mask_history:
|
||||
encoded_pairs = encoded_pairs[::-1] # high priority for last turns
|
||||
|
||||
for turn_idx, (source_ids, target_ids) in enumerate(encoded_pairs):
|
||||
if total_length >= self.data_args.cutoff_len:
|
||||
break
|
||||
|
||||
source_len, target_len = infer_seqlen(
|
||||
len(source_ids), len(target_ids), self.data_args.cutoff_len - total_length
|
||||
)
|
||||
source_ids = source_ids[:source_len]
|
||||
target_ids = target_ids[:target_len]
|
||||
total_length += source_len + target_len
|
||||
|
||||
if self.data_args.train_on_prompt:
|
||||
source_label = source_ids
|
||||
elif self.template.efficient_eos:
|
||||
source_label = [self.tokenizer.eos_token_id] + [IGNORE_INDEX] * (source_len - 1)
|
||||
else:
|
||||
source_label = [IGNORE_INDEX] * source_len
|
||||
|
||||
if self.data_args.mask_history and turn_idx != 0: # train on the last turn only
|
||||
target_label = [IGNORE_INDEX] * target_len
|
||||
else:
|
||||
target_label = target_ids
|
||||
|
||||
if self.data_args.mask_history: # reversed sequences
|
||||
input_ids = source_ids + target_ids + input_ids
|
||||
labels = source_label + target_label + labels
|
||||
else:
|
||||
input_ids += source_ids + target_ids
|
||||
labels += source_label + target_label
|
||||
|
||||
if self.template.efficient_eos:
|
||||
input_ids += [self.tokenizer.eos_token_id]
|
||||
labels += [self.tokenizer.eos_token_id]
|
||||
|
||||
return input_ids, labels
|
||||
|
||||
def preprocess_dataset(self, examples: Dict[str, List[Any]]) -> Dict[str, List[Any]]:
|
||||
# build inputs with format `<bos> X Y <eos>` and labels with format `<ignore> ... <ignore> Y <eos>`
|
||||
# for multiturn examples, we only mask the prompt part in each prompt-response pair.
|
||||
model_inputs = defaultdict(list)
|
||||
for i in range(len(examples["_prompt"])):
|
||||
if len(examples["_prompt"][i]) % 2 != 1 or len(examples["_response"][i]) != 1:
|
||||
logger.warning_rank0(
|
||||
"Dropped invalid example: {}".format(examples["_prompt"][i] + examples["_response"][i])
|
||||
)
|
||||
continue
|
||||
|
||||
input_ids, labels = self._encode_data_example(
|
||||
prompt=examples["_prompt"][i],
|
||||
response=examples["_response"][i],
|
||||
system=examples["_system"][i],
|
||||
tools=examples["_tools"][i],
|
||||
images=examples["_images"][i] or [],
|
||||
videos=examples["_videos"][i] or [],
|
||||
audios=examples["_audios"][i] or [],
|
||||
)
|
||||
model_inputs["input_ids"].append(input_ids)
|
||||
model_inputs["attention_mask"].append([1] * len(input_ids))
|
||||
model_inputs["labels"].append(labels)
|
||||
model_inputs["images"].append(examples["_images"][i])
|
||||
model_inputs["videos"].append(examples["_videos"][i])
|
||||
model_inputs["audios"].append(examples["_audios"][i])
|
||||
|
||||
return model_inputs
|
||||
|
||||
def print_data_example(self, example: Dict[str, List[int]]) -> None:
|
||||
valid_labels = list(filter(lambda x: x != IGNORE_INDEX, example["labels"]))
|
||||
print("input_ids:\n{}".format(example["input_ids"]))
|
||||
print("inputs:\n{}".format(self.tokenizer.decode(example["input_ids"], skip_special_tokens=False)))
|
||||
print("label_ids:\n{}".format(example["labels"]))
|
||||
print(f"labels:\n{self.tokenizer.decode(valid_labels, skip_special_tokens=False)}")
|
||||
|
||||
|
||||
@dataclass
|
||||
class PackedSupervisedDatasetProcessor(SupervisedDatasetProcessor):
|
||||
def preprocess_dataset(self, examples: Dict[str, List[Any]]) -> Dict[str, List[Any]]:
|
||||
# TODO: use `position_ids` to achieve packing
|
||||
# build inputs with format `<bos> X1 Y1 <eos> <bos> X2 Y2 <eos>`
|
||||
# and labels with format `<ignore> ... <ignore> Y1 <eos> <ignore> ... <ignore> Y2 <eos>`
|
||||
valid_num = 0
|
||||
batch_input_ids, batch_labels, batch_images, batch_videos, batch_audios = [], [], [], [], []
|
||||
lengths = []
|
||||
length2indexes = defaultdict(list)
|
||||
for i in range(len(examples["_prompt"])):
|
||||
if len(examples["_prompt"][i]) % 2 != 1 or len(examples["_response"][i]) != 1:
|
||||
logger.warning_rank0(
|
||||
"Dropped invalid example: {}".format(examples["_prompt"][i] + examples["_response"][i])
|
||||
)
|
||||
continue
|
||||
|
||||
input_ids, labels = self._encode_data_example(
|
||||
prompt=examples["_prompt"][i],
|
||||
response=examples["_response"][i],
|
||||
system=examples["_system"][i],
|
||||
tools=examples["_tools"][i],
|
||||
images=examples["_images"][i] or [],
|
||||
videos=examples["_videos"][i] or [],
|
||||
audios=examples["_audios"][i] or [],
|
||||
)
|
||||
length = len(input_ids)
|
||||
if length > self.data_args.cutoff_len:
|
||||
logger.warning_rank0(f"Dropped lengthy example with length {length} > {self.data_args.cutoff_len}.")
|
||||
else:
|
||||
lengths.append(length)
|
||||
length2indexes[length].append(valid_num)
|
||||
batch_input_ids.append(input_ids)
|
||||
batch_labels.append(labels)
|
||||
batch_images.append(examples["_images"][i] or [])
|
||||
batch_videos.append(examples["_videos"][i] or [])
|
||||
batch_audios.append(examples["_audios"][i] or [])
|
||||
valid_num += 1
|
||||
|
||||
model_inputs = defaultdict(list)
|
||||
knapsacks = greedy_knapsack(lengths, self.data_args.cutoff_len)
|
||||
for knapsack in knapsacks:
|
||||
packed_input_ids, packed_attention_masks, packed_labels = [], [], []
|
||||
packed_images, packed_videos, packed_audios = [], [], []
|
||||
for i, length in enumerate(knapsack):
|
||||
index = length2indexes[length].pop()
|
||||
packed_input_ids += batch_input_ids[index]
|
||||
packed_labels += batch_labels[index]
|
||||
packed_images += batch_images[index]
|
||||
packed_videos += batch_videos[index]
|
||||
packed_audios += batch_audios[index]
|
||||
if self.data_args.neat_packing:
|
||||
packed_attention_masks += [i + 1] * len(batch_input_ids[index]) # start from 1
|
||||
else:
|
||||
packed_attention_masks += [1] * len(batch_input_ids[index])
|
||||
|
||||
if len(packed_input_ids) < self.data_args.cutoff_len + 1: # avoid flash_attn drops attn mask
|
||||
pad_length = self.data_args.cutoff_len - len(packed_input_ids) + 1
|
||||
packed_input_ids += [self.tokenizer.pad_token_id] * pad_length
|
||||
packed_labels += [IGNORE_INDEX] * pad_length
|
||||
if self.data_args.neat_packing:
|
||||
packed_attention_masks += [0] * pad_length
|
||||
else:
|
||||
packed_attention_masks += [1] * pad_length # more efficient flash_attn
|
||||
|
||||
if len(packed_input_ids) != self.data_args.cutoff_len + 1:
|
||||
raise ValueError("The length of packed example should be identical to the cutoff length.")
|
||||
|
||||
model_inputs["input_ids"].append(packed_input_ids)
|
||||
model_inputs["attention_mask"].append(packed_attention_masks)
|
||||
model_inputs["labels"].append(packed_labels)
|
||||
model_inputs["images"].append(packed_images or None)
|
||||
model_inputs["videos"].append(packed_videos or None)
|
||||
model_inputs["audios"].append(packed_audios or None)
|
||||
|
||||
return model_inputs
|
||||
91
src/llamafactory/data/processor/unsupervised.py
Normal file
91
src/llamafactory/data/processor/unsupervised.py
Normal file
@@ -0,0 +1,91 @@
|
||||
# Copyright 2025 the LlamaFactory team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from collections import defaultdict
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple
|
||||
|
||||
from ...extras import logging
|
||||
from ..data_utils import Role
|
||||
from .processor_utils import DatasetProcessor, infer_seqlen
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from ..mm_plugin import AudioInput, ImageInput, VideoInput
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
class UnsupervisedDatasetProcessor(DatasetProcessor):
|
||||
def _encode_data_example(
|
||||
self,
|
||||
prompt: Sequence[Dict[str, str]],
|
||||
response: Sequence[Dict[str, str]],
|
||||
system: Optional[str],
|
||||
tools: Optional[str],
|
||||
images: Sequence["ImageInput"],
|
||||
videos: Sequence["VideoInput"],
|
||||
audios: Sequence["AudioInput"],
|
||||
) -> Tuple[List[int], List[int]]:
|
||||
if len(response) == 1:
|
||||
messages = prompt + response
|
||||
else:
|
||||
messages = prompt + [{"role": Role.ASSISTANT.value, "content": ""}]
|
||||
|
||||
messages = self.template.mm_plugin.process_messages(messages, images, videos, audios, self.processor)
|
||||
input_ids, labels = self.template.encode_oneturn(self.tokenizer, messages, system, tools)
|
||||
if self.template.efficient_eos:
|
||||
labels += [self.tokenizer.eos_token_id]
|
||||
|
||||
input_ids, _ = self.template.mm_plugin.process_token_ids(
|
||||
input_ids, None, images, videos, audios, self.tokenizer, self.processor
|
||||
)
|
||||
source_len, target_len = infer_seqlen(len(input_ids), len(labels), self.data_args.cutoff_len)
|
||||
input_ids = input_ids[:source_len]
|
||||
labels = labels[:target_len]
|
||||
return input_ids, labels
|
||||
|
||||
def preprocess_dataset(self, examples: Dict[str, List[Any]]) -> Dict[str, List[Any]]:
|
||||
# build inputs with format `<bos> X` and labels with format `Y <eos>`
|
||||
model_inputs = defaultdict(list)
|
||||
for i in range(len(examples["_prompt"])):
|
||||
if len(examples["_prompt"][i]) % 2 != 1:
|
||||
logger.warning_rank0(
|
||||
"Dropped invalid example: {}".format(examples["_prompt"][i] + examples["_response"][i])
|
||||
)
|
||||
continue
|
||||
|
||||
input_ids, labels = self._encode_data_example(
|
||||
prompt=examples["_prompt"][i],
|
||||
response=examples["_response"][i],
|
||||
system=examples["_system"][i],
|
||||
tools=examples["_tools"][i],
|
||||
images=examples["_images"][i] or [],
|
||||
videos=examples["_videos"][i] or [],
|
||||
audios=examples["_audios"][i] or [],
|
||||
)
|
||||
model_inputs["input_ids"].append(input_ids)
|
||||
model_inputs["attention_mask"].append([1] * len(input_ids))
|
||||
model_inputs["labels"].append(labels)
|
||||
model_inputs["images"].append(examples["_images"][i])
|
||||
model_inputs["videos"].append(examples["_videos"][i])
|
||||
model_inputs["audios"].append(examples["_audios"][i])
|
||||
|
||||
return model_inputs
|
||||
|
||||
def print_data_example(self, example: Dict[str, List[int]]) -> None:
|
||||
print("input_ids:\n{}".format(example["input_ids"]))
|
||||
print("inputs:\n{}".format(self.tokenizer.decode(example["input_ids"], skip_special_tokens=False)))
|
||||
print("label_ids:\n{}".format(example["labels"]))
|
||||
print("labels:\n{}".format(self.tokenizer.decode(example["labels"], skip_special_tokens=False)))
|
||||
Reference in New Issue
Block a user