mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-12-17 04:10:36 +08:00
[config] update args (#7231)
This commit is contained in:
@@ -20,6 +20,7 @@ import math
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from ...extras import logging
|
||||
from ...extras.constants import RopeScaling
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
@@ -39,33 +40,32 @@ def configure_rope(config: "PretrainedConfig", model_args: "ModelArguments", is_
|
||||
logger.warning_rank0("Current model does not support RoPE scaling.")
|
||||
return
|
||||
|
||||
rope_kwargs = {}
|
||||
rope_kwargs = {"rope_type": getattr(model_args.rope_scaling, "value", model_args.rope_scaling)} # handle enum
|
||||
if model_args.model_max_length is not None:
|
||||
if is_trainable and model_args.rope_scaling == "dynamic":
|
||||
if is_trainable and model_args.rope_scaling == RopeScaling.DYNAMIC:
|
||||
logger.warning_rank0(
|
||||
"Dynamic NTK scaling may not work well with fine-tuning. "
|
||||
"See: https://github.com/huggingface/transformers/pull/24653"
|
||||
)
|
||||
|
||||
current_max_length = getattr(config, "max_position_embeddings", None)
|
||||
if current_max_length and model_args.model_max_length > current_max_length:
|
||||
logger.info_rank0(f"Enlarge max model length from {current_max_length} to {model_args.model_max_length}.")
|
||||
setattr(config, "max_position_embeddings", model_args.model_max_length)
|
||||
rope_kwargs["factor"] = float(math.ceil(model_args.model_max_length / current_max_length))
|
||||
else:
|
||||
logger.warning_rank0("Input length is smaller than max length. Consider increase input length.")
|
||||
rope_kwargs["factor"] = 1.0
|
||||
if (not current_max_length) or model_args.model_max_length <= current_max_length:
|
||||
logger.warning_rank0("Input length is smaller than max length. Disabling rope scaling.")
|
||||
return
|
||||
|
||||
if model_args.rope_scaling == "dynamic":
|
||||
logger.info_rank0(f"Enlarge max model length from {current_max_length} to {model_args.model_max_length}.")
|
||||
setattr(config, "max_position_embeddings", model_args.model_max_length)
|
||||
rope_kwargs["factor"] = float(math.ceil(model_args.model_max_length / current_max_length))
|
||||
if model_args.rope_scaling == RopeScaling.DYNAMIC:
|
||||
rope_kwargs["original_max_position_embeddings"] = current_max_length
|
||||
elif model_args.rope_scaling == "llama3":
|
||||
elif model_args.rope_scaling == RopeScaling.LLAMA3:
|
||||
rope_kwargs["original_max_position_embeddings"] = current_max_length
|
||||
rope_kwargs["low_freq_factor"] = 1.0
|
||||
rope_kwargs["high_freq_factor"] = 4.0
|
||||
else:
|
||||
rope_kwargs["factor"] = 2.0
|
||||
|
||||
setattr(config, "rope_scaling", {"rope_type": model_args.rope_scaling, **rope_kwargs})
|
||||
setattr(config, "rope_scaling", rope_kwargs)
|
||||
logger.info_rank0(
|
||||
f"Using {model_args.rope_scaling} scaling strategy and setting scaling factor to {rope_kwargs['factor']}."
|
||||
f"Using {rope_kwargs['rope_type']} scaling strategy and setting scaling factor to {rope_kwargs['factor']}."
|
||||
)
|
||||
|
||||
Reference in New Issue
Block a user