mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-12-17 04:10:36 +08:00
update web UI, support rm predict #210
This commit is contained in:
@@ -4,7 +4,8 @@ from typing import Dict, Optional
|
||||
|
||||
from transformers import Seq2SeqTrainer
|
||||
from transformers.trainer import TRAINING_ARGS_NAME
|
||||
from transformers.modeling_utils import unwrap_model
|
||||
from transformers.modeling_utils import PreTrainedModel, unwrap_model
|
||||
from peft import PeftModel
|
||||
|
||||
from llmtuner.extras.constants import FINETUNING_ARGS_NAME, VALUE_HEAD_FILE_NAME
|
||||
from llmtuner.extras.logging import get_logger
|
||||
@@ -49,9 +50,9 @@ class PeftTrainer(Seq2SeqTrainer):
|
||||
else:
|
||||
backbone_model = model
|
||||
|
||||
if self.finetuning_args.finetuning_type == "lora":
|
||||
if isinstance(backbone_model, PeftModel): # LoRA tuning
|
||||
backbone_model.save_pretrained(output_dir, state_dict=get_state_dict(backbone_model))
|
||||
else: # freeze/full tuning
|
||||
elif isinstance(backbone_model, PreTrainedModel): # freeze/full tuning
|
||||
backbone_model.config.use_cache = True
|
||||
backbone_model.save_pretrained(
|
||||
output_dir,
|
||||
@@ -61,6 +62,8 @@ class PeftTrainer(Seq2SeqTrainer):
|
||||
backbone_model.config.use_cache = False
|
||||
if self.tokenizer is not None:
|
||||
self.tokenizer.save_pretrained(output_dir)
|
||||
else:
|
||||
logger.warning("No model to save.")
|
||||
|
||||
with open(os.path.join(output_dir, TRAINING_ARGS_NAME), "w", encoding="utf-8") as f:
|
||||
f.write(self.args.to_json_string() + "\n")
|
||||
@@ -77,8 +80,8 @@ class PeftTrainer(Seq2SeqTrainer):
|
||||
model = unwrap_model(self.model)
|
||||
backbone_model = getattr(model, "pretrained_model") if hasattr(model, "pretrained_model") else model
|
||||
|
||||
if self.finetuning_args.finetuning_type == "lora":
|
||||
backbone_model.load_adapter(self.state.best_model_checkpoint, getattr(backbone_model, "active_adapter"))
|
||||
if isinstance(backbone_model, PeftModel):
|
||||
backbone_model.load_adapter(self.state.best_model_checkpoint, backbone_model.active_adapter)
|
||||
if hasattr(model, "v_head") and load_valuehead_params(model, self.state.best_model_checkpoint):
|
||||
model.v_head.load_state_dict({
|
||||
"summary.weight": getattr(model, "reward_head_weight"),
|
||||
|
||||
Reference in New Issue
Block a user