[model] update kt code (#9406)

This commit is contained in:
Yaowei Zheng
2025-11-05 15:27:22 +08:00
committed by GitHub
parent 56f45e826f
commit eaf963f67f
28 changed files with 108 additions and 68 deletions

View File

@@ -167,7 +167,7 @@ def _setup_lora_tuning(
is_mergeable = False
if model_args.use_kt:
assert len(model_args.adapter_name_or_path) == 1, "Up to now, KTransformers model only accepts a single adapter, for more features, you can contact with us."
assert len(model_args.adapter_name_or_path) == 1, "KTransformers model only accepts a single adapter"
is_mergeable = False
if model_args.use_unsloth:
@@ -190,7 +190,9 @@ def _setup_lora_tuning(
if model_args.use_kt:
if model_args.infer_backend != EngineName.KT:
raise ValueError("We should use ktransformers as backend to infer the adapter fine-tuned by ktransformers.")
raise ValueError(
"We should use ktransformers as backend to infer the adapter fine-tuned by ktransformers."
)
for adapter in adapter_to_merge:
model: LoraModel = PeftModel.from_pretrained(model, adapter, **init_kwargs)
@@ -218,9 +220,9 @@ def _setup_lora_tuning(
if model_args.use_kt:
new_list = []
for m in target_modules:
if m in ('down_proj', 'up_proj', 'gate_proj'):
if m in ("down_proj", "up_proj", "gate_proj"):
new_list.extend([f"mlp.{m}", f"shared_experts.{m}"])
elif m not in ('generate_linear', 'orig_module', 'prefill_linear'):
elif m not in ("generate_linear", "orig_module", "prefill_linear"):
new_list.append(m)
target_modules[:] = new_list

View File

@@ -146,6 +146,7 @@ def load_model(
lazy_load = False
if model_args.use_kt:
from ktransformers.sft.monkey_patch_torch_module import install_patch
install_patch()
model = load_kt_pretrained_model(config, model_args)
elif model_args.use_unsloth:

View File

@@ -59,6 +59,7 @@ def configure_attn_implementation(config: "PretrainedConfig", model_args: "Model
requested_attn_implementation = "sdpa"
elif model_args.flash_attn == AttentionFunction.FA2:
from transformers import is_torch_npu_available
if not (is_flash_attn_2_available() or is_torch_npu_available()):
logger.warning_rank0("FlashAttention-2 is not installed.")
return

View File

@@ -13,7 +13,7 @@
# limitations under the License.
import importlib.util as _u
from typing import TYPE_CHECKING, Any, Optional
from typing import TYPE_CHECKING, Any
import torch
@@ -43,6 +43,7 @@ if KT_AVAILABLE:
logger = logging.get_logger(__name__)
def _get_kt_kwargs(
config: "PretrainedConfig",
model_name_or_path: str,
@@ -64,9 +65,7 @@ def _get_kt_kwargs(
}
def load_kt_pretrained_model(
config: "PretrainedConfig", model_args: "ModelArguments"
) -> Optional["PreTrainedModel"]:
def load_kt_pretrained_model(config: "PretrainedConfig", model_args: "ModelArguments") -> "PreTrainedModel":
r"""Optionally load pretrained model with KTransformers. Used in training."""
custom_models = {
"DeepseekV2ForCausalLM": DeepseekV2ForCausalLM,
@@ -79,7 +78,7 @@ def load_kt_pretrained_model(
Config().chunk_size = model_args.chunk_size
config = AutoConfig.from_pretrained(model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code)
if model_args.mode == 'long_context':
if model_args.mode == "long_context":
assert config.architectures[0] == "LlamaForCausalLM", "only LlamaForCausalLM support long_context mode"
torch.set_default_dtype(torch.float16)
else:
@@ -88,9 +87,7 @@ def load_kt_pretrained_model(
with torch.device("meta"):
if config.architectures[0] in custom_models:
print("using custom modeling_xxx.py.")
if (
"Qwen2Moe" in config.architectures[0]
): # Qwen2Moe must use flash_attention_2 to avoid overflow.
if "Qwen2Moe" in config.architectures[0]: # Qwen2Moe must use flash_attention_2 to avoid overflow.
config._attn_implementation = "flash_attention_2"
if "Llama" in config.architectures[0]:
config._attn_implementation = "eager"
@@ -115,21 +112,17 @@ def load_kt_pretrained_model(
return model
def get_kt_peft_model(
model: "PreTrainedModel", peft_kwargs: dict[str, Any]
) -> "PreTrainedModel":
def get_kt_peft_model(model: "PreTrainedModel", peft_kwargs: dict[str, Any]) -> "PreTrainedModel":
r"""Get the peft model for the pretrained model with KTransformers. Used in training."""
from ktransformers.sft.peft_utils.mapping import get_peft_model
return get_peft_model(model, peft_kwargs)
def load_kt_peft_model(
model_args: "ModelArguments", model: "PreTrainedModel",
) -> "PreTrainedModel":
def load_kt_peft_model(model_args: "ModelArguments", model: "PreTrainedModel") -> "PreTrainedModel":
r"""Load peft model with KTransformers. Used in both training and inference."""
load_adapter_name_or_path = model_args.adapter_name_or_path[0]
if load_adapter_name_or_path.endswith('.gguf'):
if load_adapter_name_or_path.endswith(".gguf"):
inject_lora_layer(model, load_adapter_name_or_path)
adapter_gguf_loader = GGUFLoader(load_adapter_name_or_path)
load_weights(model, adapter_gguf_loader, adapter_gguf=True)