mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-10-15 16:18:10 +08:00
enable cutoff len
Former-commit-id: e9513d300c338dfcae98eee7d057bfd00da2da0e
This commit is contained in:
parent
d8affd3967
commit
e4a424cb6a
1
data/glaive_toolcall_10k.json.REMOVED.git-id
Normal file
1
data/glaive_toolcall_10k.json.REMOVED.git-id
Normal file
@ -0,0 +1 @@
|
||||
0fe460c57c1a1dae70cdd72b185129c2aaae4e24
|
@ -12,7 +12,7 @@ if TYPE_CHECKING:
|
||||
|
||||
|
||||
def convert_alpaca(examples: Dict[str, List[Any]], dataset_attr: "DatasetAttr") -> Dict[str, List[Any]]:
|
||||
outputs = {"prompt": [], "response": [], "system": [], "tool": []}
|
||||
outputs = {"prompt": [], "response": [], "system": [], "tools": []}
|
||||
for i in range(len(examples[dataset_attr.prompt])):
|
||||
prompt = []
|
||||
if dataset_attr.history:
|
||||
@ -33,13 +33,13 @@ def convert_alpaca(examples: Dict[str, List[Any]], dataset_attr: "DatasetAttr")
|
||||
outputs["prompt"].append(prompt)
|
||||
outputs["response"].append(response)
|
||||
outputs["system"].append(examples[dataset_attr.system][i] if dataset_attr.system else "")
|
||||
outputs["tool"].append("")
|
||||
outputs["tools"].append("")
|
||||
|
||||
return outputs
|
||||
|
||||
|
||||
def convert_sharegpt(examples: Dict[str, List[Any]], dataset_attr: "DatasetAttr") -> Dict[str, List[Any]]:
|
||||
outputs = {"prompt": [], "response": [], "system": [], "tool": []}
|
||||
outputs = {"prompt": [], "response": [], "system": [], "tools": []}
|
||||
tag_mapping = {
|
||||
dataset_attr.user_tag: Role.USER,
|
||||
dataset_attr.assistant_tag: Role.ASSISTANT,
|
||||
@ -69,7 +69,7 @@ def convert_sharegpt(examples: Dict[str, List[Any]], dataset_attr: "DatasetAttr"
|
||||
outputs["prompt"].append(prompt)
|
||||
outputs["response"].append(response)
|
||||
outputs["system"].append(examples[dataset_attr.system][i] if dataset_attr.system else "")
|
||||
outputs["tool"].append(examples[dataset_attr.tool][i] if dataset_attr.tool else "")
|
||||
outputs["tools"].append(examples[dataset_attr.tools][i] if dataset_attr.tools else "")
|
||||
|
||||
return outputs
|
||||
|
||||
@ -82,7 +82,7 @@ def align_dataset(
|
||||
prompt: [{"role": "user", "content": "..."}]
|
||||
response: [{"role": "assistant", "content": "..."}]
|
||||
system: "..."
|
||||
tool: "..."
|
||||
tools: "..."
|
||||
"""
|
||||
if dataset_attr.formatting == "alpaca":
|
||||
convert_func = partial(convert_alpaca, dataset_attr=dataset_attr)
|
||||
|
@ -93,6 +93,9 @@ class ToolFormatter:
|
||||
def __call__(self, content: str) -> List[Union[str, Dict[str, str]]]:
|
||||
try:
|
||||
tools = json.loads(content)
|
||||
if not len(tools):
|
||||
return [""]
|
||||
|
||||
if self.type == "default":
|
||||
return [self._default(tools)]
|
||||
except json.JSONDecodeError:
|
||||
|
@ -29,7 +29,7 @@ class DatasetAttr:
|
||||
history: Optional[str] = None
|
||||
|
||||
messages: Optional[str] = "conversations"
|
||||
tool: Optional[str] = None
|
||||
tools: Optional[str] = None
|
||||
|
||||
role_tag: Optional[str] = "from"
|
||||
content_tag: Optional[str] = "value"
|
||||
@ -86,7 +86,7 @@ def get_dataset_list(data_args: "DataArguments") -> List["DatasetAttr"]:
|
||||
if dataset_attr.formatting == "alpaca":
|
||||
column_names = ["prompt", "query", "response", "history"]
|
||||
else:
|
||||
column_names = ["messages", "tool"]
|
||||
column_names = ["messages", "tools"]
|
||||
|
||||
column_names += ["system"]
|
||||
for column_name in column_names:
|
||||
|
@ -58,7 +58,7 @@ def preprocess_supervised_dataset(
|
||||
messages = examples["prompt"][i] + examples["response"][i]
|
||||
input_ids, labels = [], []
|
||||
for turn_idx, (source_ids, target_ids) in enumerate(template.encode_multiturn(
|
||||
tokenizer, messages, examples["system"][i], examples["tool"][i], data_args.cutoff_len
|
||||
tokenizer, messages, examples["system"][i], examples["tools"][i], data_args.cutoff_len
|
||||
)):
|
||||
if data_args.train_on_prompt:
|
||||
source_mask = source_ids
|
||||
@ -97,7 +97,7 @@ def preprocess_packed_supervised_dataset(
|
||||
|
||||
messages = examples["prompt"][i] + examples["response"][i]
|
||||
for turn_idx, (source_ids, target_ids) in enumerate(template.encode_multiturn(
|
||||
tokenizer, messages, examples["system"][i], examples["tool"][i]
|
||||
tokenizer, messages, examples["system"][i], examples["tools"][i]
|
||||
)):
|
||||
if data_args.train_on_prompt:
|
||||
source_mask = source_ids
|
||||
@ -141,7 +141,7 @@ def preprocess_unsupervised_dataset(
|
||||
|
||||
messages = examples["prompt"][i] + examples["response"][i]
|
||||
input_ids, labels = template.encode_oneturn(
|
||||
tokenizer, messages, examples["system"][i], examples["tool"][i], data_args.cutoff_len
|
||||
tokenizer, messages, examples["system"][i], examples["tools"][i], data_args.cutoff_len
|
||||
)
|
||||
|
||||
if template.efficient_eos:
|
||||
@ -170,10 +170,10 @@ def preprocess_pairwise_dataset(
|
||||
rejected_messages = examples["prompt"][i] + [examples["response"][i][1]]
|
||||
|
||||
prompt_ids, chosen_ids = template.encode_oneturn(
|
||||
tokenizer, chosen_messages, examples["system"][i], examples["tool"][i], data_args.cutoff_len
|
||||
tokenizer, chosen_messages, examples["system"][i], examples["tools"][i], data_args.cutoff_len
|
||||
)
|
||||
_, rejected_ids = template.encode_oneturn(
|
||||
tokenizer, rejected_messages, examples["system"][i], examples["tool"][i], data_args.cutoff_len
|
||||
tokenizer, rejected_messages, examples["system"][i], examples["tools"][i], data_args.cutoff_len
|
||||
)
|
||||
|
||||
if template.efficient_eos:
|
||||
|
@ -95,7 +95,21 @@ class Template:
|
||||
|
||||
encoded_messages.append(self._convert_elements_to_ids(tokenizer, elements))
|
||||
|
||||
return [(encoded_messages[i], encoded_messages[i+1]) for i in range(0, len(encoded_messages), 2)]
|
||||
# TODO: need to improve
|
||||
encoded_pairs = []
|
||||
total_length = 0
|
||||
for i in range(0, len(encoded_messages), 2):
|
||||
if total_length >= cutoff_len:
|
||||
break
|
||||
|
||||
encoded_messages[i] = encoded_messages[i][:cutoff_len-total_length]
|
||||
total_length += len(encoded_messages[i])
|
||||
|
||||
encoded_messages[i+1] = encoded_messages[i+1][:max(1, cutoff_len-total_length)]
|
||||
total_length += len(encoded_messages[i+1])
|
||||
encoded_pairs.append((encoded_messages[i], encoded_messages[i+1]))
|
||||
|
||||
return encoded_pairs
|
||||
|
||||
def _convert_elements_to_ids(
|
||||
self,
|
||||
@ -161,7 +175,21 @@ class Llama2Template(Template):
|
||||
|
||||
encoded_messages.append(self._convert_elements_to_ids(tokenizer, elements))
|
||||
|
||||
return [(encoded_messages[i], encoded_messages[i+1]) for i in range(0, len(encoded_messages), 2)]
|
||||
# TODO: need to improve
|
||||
encoded_pairs = []
|
||||
total_length = 0
|
||||
for i in range(0, len(encoded_messages), 2):
|
||||
if total_length >= cutoff_len:
|
||||
break
|
||||
|
||||
encoded_messages[i] = encoded_messages[i][:cutoff_len-total_length]
|
||||
total_length += len(encoded_messages[i])
|
||||
|
||||
encoded_messages[i+1] = encoded_messages[i+1][:max(1, cutoff_len-total_length)]
|
||||
total_length += len(encoded_messages[i+1])
|
||||
encoded_pairs.append((encoded_messages[i], encoded_messages[i+1]))
|
||||
|
||||
return encoded_pairs
|
||||
|
||||
|
||||
templates: Dict[str, Template] = {}
|
||||
|
Loading…
x
Reference in New Issue
Block a user