update examples

Former-commit-id: f22eaeb5bc5329146feb0cc5455fae8ce10380f8
This commit is contained in:
hiyouga 2024-04-02 20:51:21 +08:00
parent 9df316931b
commit e341fa59fe
6 changed files with 34 additions and 34 deletions

View File

@ -3,41 +3,41 @@ We provide diverse examples about fine-tuning LLMs.
```
examples/
├── lora_single_gpu/
│ ├── pt.sh: Pre-training
│ ├── sft.sh: Supervised fine-tuning
│ ├── reward.sh: Reward modeling
│ ├── ppo.sh: PPO training
│ ├── dpo.sh: DPO training
│ ├── orpo.sh: ORPO training
│ ├── pt.sh: Do pre-training
│ ├── sft.sh: Do supervised fine-tuning
│ ├── reward.sh: Do reward modeling
│ ├── ppo.sh: Do PPO training
│ ├── dpo.sh: Do DPO training
│ ├── orpo.sh: Do ORPO training
│ ├── prepare.sh: Save tokenized dataset
│ └── predict.sh: Batch prediction
│ └── predict.sh: Do batch predict
├── qlora_single_gpu/
│ ├── bitsandbytes.sh
│ ├── gptq.sh
│ ├── awq.sh
│ └── aqlm.sh
│ ├── bitsandbytes.sh: Fine-tune 4/8-bit BNB models
│ ├── gptq.sh: Fine-tune 4/8-bit GPTQ models
│ ├── awq.sh: Fine-tune 4-bit AWQ models
│ └── aqlm.sh: Fine-tune 2-bit AQLM models
├── lora_multi_gpu/
│ ├── single_node.sh
│ └── multi_node.sh
│ ├── single_node.sh: Fine-tune model with Accelerate on single node
│ └── multi_node.sh: Fine-tune model with Accelerate on multiple nodes
├── full_multi_gpu/
│ ├── single_node.sh
│ └── multi_node.sh
│ ├── single_node.sh: Fine-tune model with DeepSpeed on single node
│ └── multi_node.sh: Fine-tune model with DeepSpeed on multiple nodes
├── merge_lora/
│ ├── merge.sh: Merge LoRA weights
│ └── quantize.sh: Quantize with AutoGPTQ
│ ├── merge.sh: Merge LoRA weights into the pre-trained models
│ └── quantize.sh: Quantize fine-tuned model with AutoGPTQ
├── inference/
│ ├── cli_demo.sh
│ ├── api_demo.sh
│ ├── web_demo.sh
│ └── evaluate.sh
│ ├── cli_demo.sh: Launch a command line interface
│ ├── api_demo.sh: Launch an OpenAI-style API
│ ├── web_demo.sh: Launch a web interface
│ └── evaluate.sh: Evaluate model on the MMLU benchmark
└── extras/
├── galore/
│ └── sft.sh
│ └── sft.sh: Fine-tune model with GaLore
├── loraplus/
│ └── sft.sh
│ └── sft.sh: Fine-tune model with LoRA+
├── llama_pro/
│ ├── expand.sh
│ └── sft.sh
│ ├── expand.sh: Expand layers in the model
│ └── sft.sh: Fine-tune expanded model
└── fsdp_qlora/
└── sft.sh
└── sft.sh: Fine-tune quantized model with FSDP
```

View File

@ -5,17 +5,17 @@ pip install "accelerate>=0.28.0"
pip install "bitsandbytes>=0.43.0"
CUDA_VISIBLE_DEVICES=0,1 accelerate launch \
--config_file ../accelerate/fsdp_config.yaml \
../../src/train_bash.py \
--config_file ../../accelerate/fsdp_config.yaml \
../../../src/train_bash.py \
--stage sft \
--do_train \
--model_name_or_path meta-llama/Llama-2-70b-hf \
--dataset alpaca_gpt4_en,glaive_toolcall \
--dataset_dir ../../data \
--dataset_dir ../../../data \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--output_dir ../../saves/LLaMA2-70B/lora/sft \
--output_dir ../../../saves/LLaMA2-70B/lora/sft \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \

View File

@ -1,6 +1,6 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 API_PORT=8000 python src/api_demo.py \
CUDA_VISIBLE_DEVICES=0 API_PORT=8000 python ../../src/api_demo.py \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
--template default \

View File

@ -1,6 +1,6 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 python src/cli_demo.py \
CUDA_VISIBLE_DEVICES=0 python ../../src/cli_demo.py \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
--template default \

View File

@ -1,6 +1,6 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 python src/evaluate.py \
CUDA_VISIBLE_DEVICES=0 python ../../src/evaluate.py \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
--template vanilla \

View File

@ -1,6 +1,6 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 python src/web_demo.py \
CUDA_VISIBLE_DEVICES=0 python ../../src/web_demo.py \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
--template default \