mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-12-14 19:06:26 +08:00
@@ -1,7 +1,7 @@
|
||||
# model
|
||||
### model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
|
||||
# method
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: full
|
||||
@@ -10,7 +10,7 @@ badam_switch_mode: descending
|
||||
badam_switch_interval: 50
|
||||
badam_verbose: 2
|
||||
|
||||
# dataset
|
||||
### dataset
|
||||
dataset: identity,alpaca_gpt4_en
|
||||
template: llama3
|
||||
cutoff_len: 1024
|
||||
@@ -18,14 +18,14 @@ max_samples: 1000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
# output
|
||||
### output
|
||||
output_dir: saves/llama3-8b/full/sft
|
||||
logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
# train
|
||||
### train
|
||||
per_device_train_batch_size: 1
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 0.0001
|
||||
@@ -34,7 +34,7 @@ lr_scheduler_type: cosine
|
||||
warmup_steps: 0.1
|
||||
pure_bf16: true
|
||||
|
||||
# eval
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 1
|
||||
evaluation_strategy: steps
|
||||
|
||||
@@ -1,17 +1,17 @@
|
||||
# model
|
||||
### model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
quantization_bit: 4
|
||||
|
||||
# method
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: q_proj,v_proj
|
||||
|
||||
# ddp
|
||||
### ddp
|
||||
ddp_timeout: 180000000
|
||||
|
||||
# dataset
|
||||
### dataset
|
||||
dataset: identity,alpaca_gpt4_en
|
||||
template: llama3
|
||||
cutoff_len: 1024
|
||||
@@ -19,14 +19,14 @@ max_samples: 1000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
# output
|
||||
### output
|
||||
output_dir: saves/llama3-8b/lora/sft
|
||||
logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
# train
|
||||
### train
|
||||
per_device_train_batch_size: 1
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 0.0001
|
||||
@@ -35,7 +35,7 @@ lr_scheduler_type: cosine
|
||||
warmup_steps: 0.1
|
||||
fp16: true
|
||||
|
||||
# eval
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 1
|
||||
evaluation_strategy: steps
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
# model
|
||||
### model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
|
||||
# method
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: full
|
||||
@@ -11,7 +11,7 @@ galore_target: mlp,self_attn
|
||||
galore_rank: 128
|
||||
galore_scale: 2.0
|
||||
|
||||
# dataset
|
||||
### dataset
|
||||
dataset: identity,alpaca_gpt4_en
|
||||
template: llama3
|
||||
cutoff_len: 1024
|
||||
@@ -19,14 +19,14 @@ max_samples: 1000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
# output
|
||||
### output
|
||||
output_dir: saves/llama3-8b/full/sft
|
||||
logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
# train
|
||||
### train
|
||||
per_device_train_batch_size: 1
|
||||
gradient_accumulation_steps: 1
|
||||
learning_rate: 0.0001
|
||||
@@ -35,7 +35,7 @@ lr_scheduler_type: cosine
|
||||
warmup_steps: 0.1
|
||||
pure_bf16: true
|
||||
|
||||
# eval
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 1
|
||||
evaluation_strategy: steps
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
# model
|
||||
### model
|
||||
model_name_or_path: models/llama3-8b-instruct-pro
|
||||
|
||||
# method
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: freeze
|
||||
@@ -9,7 +9,7 @@ freeze_trainable_layers: 8
|
||||
freeze_trainable_modules: all
|
||||
use_llama_pro: true
|
||||
|
||||
# dataset
|
||||
### dataset
|
||||
dataset: identity,alpaca_gpt4_en
|
||||
template: llama3
|
||||
cutoff_len: 1024
|
||||
@@ -17,14 +17,14 @@ max_samples: 1000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
# output
|
||||
### output
|
||||
output_dir: saves/llama3-8b-instruct-pro/freeze/sft
|
||||
logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
# train
|
||||
### train
|
||||
per_device_train_batch_size: 1
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 0.0001
|
||||
@@ -33,7 +33,7 @@ lr_scheduler_type: cosine
|
||||
warmup_steps: 0.1
|
||||
fp16: true
|
||||
|
||||
# eval
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 1
|
||||
evaluation_strategy: steps
|
||||
|
||||
@@ -1,14 +1,14 @@
|
||||
# model
|
||||
### model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
|
||||
# method
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: q_proj,v_proj
|
||||
loraplus_lr_ratio: 16.0
|
||||
|
||||
# dataset
|
||||
### dataset
|
||||
dataset: identity,alpaca_gpt4_en
|
||||
template: llama3
|
||||
cutoff_len: 1024
|
||||
@@ -16,14 +16,14 @@ max_samples: 1000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
# output
|
||||
### output
|
||||
output_dir: saves/llama3-8b/lora/sft
|
||||
logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
# train
|
||||
### train
|
||||
per_device_train_batch_size: 1
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 0.0001
|
||||
@@ -32,7 +32,7 @@ lr_scheduler_type: cosine
|
||||
warmup_steps: 0.1
|
||||
fp16: true
|
||||
|
||||
# eval
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 1
|
||||
evaluation_strategy: steps
|
||||
|
||||
@@ -1,13 +1,13 @@
|
||||
# model
|
||||
### model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
|
||||
# method
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: full
|
||||
mixture_of_depths: convert
|
||||
|
||||
# dataset
|
||||
### dataset
|
||||
dataset: identity,alpaca_gpt4_en
|
||||
template: llama3
|
||||
cutoff_len: 1024
|
||||
@@ -15,14 +15,14 @@ max_samples: 1000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
# output
|
||||
### output
|
||||
output_dir: saves/llama3-8b-mod/full/sft
|
||||
logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
# train
|
||||
### train
|
||||
per_device_train_batch_size: 1
|
||||
gradient_accumulation_steps: 8
|
||||
optim: paged_adamw_8bit
|
||||
@@ -32,7 +32,7 @@ lr_scheduler_type: cosine
|
||||
warmup_steps: 0.1
|
||||
pure_bf16: true
|
||||
|
||||
# eval
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 1
|
||||
evaluation_strategy: steps
|
||||
|
||||
Reference in New Issue
Block a user