diff --git a/src/llmtuner/tuner/core/utils.py b/src/llmtuner/tuner/core/utils.py index 9e757718..d9a1aac9 100644 --- a/src/llmtuner/tuner/core/utils.py +++ b/src/llmtuner/tuner/core/utils.py @@ -56,18 +56,20 @@ def prepare_model_for_training( logger.info("Upcasting weights in layernorm in float32.") if finetuning_args.neft_alpha > 1e-6: - input_embed: torch.nn.Embedding = model.get_input_embeddings() - - def noisy_forward(self: torch.nn.Embedding, x: torch.Tensor) -> torch.Tensor: - embeddings = torch.nn.Embedding.forward(self, x) - if self.training: - dims = self.num_embeddings * self.embedding_dim - mag_norm = finetuning_args.neft_alpha / (dims ** 0.5) - embeddings += torch.zeros_like(embeddings).uniform_(-mag_norm, mag_norm) - return embeddings + input_embed = model.get_input_embeddings() + if isinstance(input_embed, torch.nn.Embedding): + def noisy_forward(self: torch.nn.Embedding, x: torch.Tensor) -> torch.Tensor: + embeddings = input_embed.__class__.forward(self, x) + if self.training: + dims = self.num_embeddings * self.embedding_dim + mag_norm = finetuning_args.neft_alpha / (dims ** 0.5) + embeddings += torch.zeros_like(embeddings).uniform_(-mag_norm, mag_norm) + return embeddings - input_embed.forward = MethodType(noisy_forward, input_embed) - logger.info("Using noisy embedding with alpha={:.2f}".format(finetuning_args.neft_alpha)) + input_embed.forward = MethodType(noisy_forward, input_embed) + logger.info("Using noisy embedding with alpha={:.2f}".format(finetuning_args.neft_alpha)) + else: + logger.warning("Input embeddings are not normal nn.Embedding, cannot transform into noisy embedding.") if use_gradient_checkpointing: if hasattr(model, "enable_input_require_grads"): @@ -82,12 +84,11 @@ def prepare_model_for_training( logger.info("Gradient checkpointing enabled.") if finetuning_args.finetuning_type != "full" and hasattr(model, output_layer_name): - output_layer: torch.nn.Linear = getattr(model, output_layer_name) - input_dtype = output_layer.weight.dtype + output_layer = getattr(model, output_layer_name) + if isinstance(output_layer, torch.nn.Linear): + def forward_in_fp32(self, x: torch.Tensor) -> torch.Tensor: + return output_layer.__class__.forward(self, x.to(output_layer.weight.dtype)).to(torch.float32) - def forward_in_fp32(self, x: torch.Tensor) -> torch.Tensor: - return torch.nn.Linear.forward(self, x.to(input_dtype)).to(torch.float32) - - output_layer.forward = MethodType(forward_in_fp32, output_layer) + output_layer.forward = MethodType(forward_in_fp32, output_layer) return model