mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-12-17 04:10:36 +08:00
update get template
This commit is contained in:
@@ -17,7 +17,7 @@
|
||||
|
||||
from typing import TYPE_CHECKING, List, Optional
|
||||
|
||||
from ...data import PairwiseDataCollatorWithPadding, get_dataset
|
||||
from ...data import PairwiseDataCollatorWithPadding, get_dataset, get_template_and_fix_tokenizer
|
||||
from ...extras.constants import IGNORE_INDEX
|
||||
from ...extras.ploting import plot_loss
|
||||
from ...hparams import ModelArguments
|
||||
@@ -41,7 +41,8 @@ def run_dpo(
|
||||
):
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
tokenizer = tokenizer_module["tokenizer"]
|
||||
dataset_module, template = get_dataset(model_args, data_args, training_args, stage="rm", **tokenizer_module)
|
||||
template = get_template_and_fix_tokenizer(tokenizer, data_args)
|
||||
dataset_module = get_dataset(template, model_args, data_args, training_args, stage="rm", **tokenizer_module)
|
||||
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train)
|
||||
|
||||
data_collator = PairwiseDataCollatorWithPadding(
|
||||
|
||||
@@ -17,7 +17,7 @@
|
||||
|
||||
from typing import TYPE_CHECKING, List, Optional
|
||||
|
||||
from ...data import KTODataCollatorWithPadding, get_dataset
|
||||
from ...data import KTODataCollatorWithPadding, get_dataset, get_template_and_fix_tokenizer
|
||||
from ...extras.constants import IGNORE_INDEX
|
||||
from ...extras.ploting import plot_loss
|
||||
from ...hparams import ModelArguments
|
||||
@@ -41,7 +41,8 @@ def run_kto(
|
||||
):
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
tokenizer = tokenizer_module["tokenizer"]
|
||||
dataset_module, template = get_dataset(model_args, data_args, training_args, stage="kto", **tokenizer_module)
|
||||
template = get_template_and_fix_tokenizer(tokenizer, data_args)
|
||||
dataset_module = get_dataset(template, model_args, data_args, training_args, stage="kto", **tokenizer_module)
|
||||
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train)
|
||||
|
||||
data_collator = KTODataCollatorWithPadding(
|
||||
|
||||
@@ -17,7 +17,7 @@
|
||||
|
||||
from typing import TYPE_CHECKING, List, Optional
|
||||
|
||||
from ...data import MultiModalDataCollatorForSeq2Seq, get_dataset
|
||||
from ...data import MultiModalDataCollatorForSeq2Seq, get_dataset, get_template_and_fix_tokenizer
|
||||
from ...extras.ploting import plot_loss
|
||||
from ...model import load_model, load_tokenizer
|
||||
from ..callbacks import fix_valuehead_checkpoint
|
||||
@@ -41,7 +41,8 @@ def run_ppo(
|
||||
):
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
tokenizer = tokenizer_module["tokenizer"]
|
||||
dataset_module, template = get_dataset(model_args, data_args, training_args, stage="ppo", **tokenizer_module)
|
||||
template = get_template_and_fix_tokenizer(tokenizer, data_args)
|
||||
dataset_module = get_dataset(template, model_args, data_args, training_args, stage="ppo", **tokenizer_module)
|
||||
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train, add_valuehead=True)
|
||||
|
||||
tokenizer.padding_side = "left" # use left-padding in generation while using right-padding in training
|
||||
|
||||
@@ -20,7 +20,7 @@ from typing import TYPE_CHECKING, List, Optional
|
||||
|
||||
from transformers import DataCollatorForLanguageModeling
|
||||
|
||||
from ...data import get_dataset
|
||||
from ...data import get_dataset, get_template_and_fix_tokenizer
|
||||
from ...extras.ploting import plot_loss
|
||||
from ...model import load_model, load_tokenizer
|
||||
from ..trainer_utils import create_modelcard_and_push
|
||||
@@ -42,7 +42,8 @@ def run_pt(
|
||||
):
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
tokenizer = tokenizer_module["tokenizer"]
|
||||
dataset_module, _ = get_dataset(model_args, data_args, training_args, stage="pt", **tokenizer_module)
|
||||
template = get_template_and_fix_tokenizer(tokenizer, data_args)
|
||||
dataset_module = get_dataset(template, model_args, data_args, training_args, stage="pt", **tokenizer_module)
|
||||
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train)
|
||||
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
||||
|
||||
|
||||
@@ -17,7 +17,7 @@
|
||||
|
||||
from typing import TYPE_CHECKING, List, Optional
|
||||
|
||||
from ...data import PairwiseDataCollatorWithPadding, get_dataset
|
||||
from ...data import PairwiseDataCollatorWithPadding, get_dataset, get_template_and_fix_tokenizer
|
||||
from ...extras.ploting import plot_loss
|
||||
from ...model import load_model, load_tokenizer
|
||||
from ..callbacks import fix_valuehead_checkpoint
|
||||
@@ -41,7 +41,8 @@ def run_rm(
|
||||
):
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
tokenizer = tokenizer_module["tokenizer"]
|
||||
dataset_module, template = get_dataset(model_args, data_args, training_args, stage="rm", **tokenizer_module)
|
||||
template = get_template_and_fix_tokenizer(tokenizer, data_args)
|
||||
dataset_module = get_dataset(template, model_args, data_args, training_args, stage="rm", **tokenizer_module)
|
||||
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train, add_valuehead=True)
|
||||
data_collator = PairwiseDataCollatorWithPadding(template=template, pad_to_multiple_of=8, **tokenizer_module)
|
||||
|
||||
|
||||
@@ -17,7 +17,7 @@
|
||||
|
||||
from typing import TYPE_CHECKING, List, Optional
|
||||
|
||||
from ...data import SFTDataCollatorWith4DAttentionMask, get_dataset
|
||||
from ...data import SFTDataCollatorWith4DAttentionMask, get_dataset, get_template_and_fix_tokenizer
|
||||
from ...extras.constants import IGNORE_INDEX
|
||||
from ...extras.misc import get_logits_processor
|
||||
from ...extras.ploting import plot_loss
|
||||
@@ -43,7 +43,8 @@ def run_sft(
|
||||
):
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
tokenizer = tokenizer_module["tokenizer"]
|
||||
dataset_module, template = get_dataset(model_args, data_args, training_args, stage="sft", **tokenizer_module)
|
||||
template = get_template_and_fix_tokenizer(tokenizer, data_args)
|
||||
dataset_module = get_dataset(template, model_args, data_args, training_args, stage="sft", **tokenizer_module)
|
||||
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train)
|
||||
|
||||
if getattr(model, "is_quantized", False) and not training_args.do_train:
|
||||
@@ -62,7 +63,7 @@ def run_sft(
|
||||
# Override the decoding parameters of Seq2SeqTrainer
|
||||
training_args.generation_max_length = training_args.generation_max_length or data_args.cutoff_len
|
||||
training_args.generation_num_beams = data_args.eval_num_beams or training_args.generation_num_beams
|
||||
training_args.remove_unused_columns = False # important for multimodal and pairwise dataset
|
||||
training_args.remove_unused_columns = False # important for multimodal dataset
|
||||
|
||||
# Metric utils
|
||||
metric_module = {}
|
||||
|
||||
@@ -19,7 +19,7 @@ from peft import PeftModel
|
||||
from transformers import AutoModelForCausalLM
|
||||
from trl import AutoModelForCausalLMWithValueHead
|
||||
|
||||
from ..data import get_dataset
|
||||
from ..data import get_dataset, get_template_and_fix_tokenizer
|
||||
from ..extras.misc import get_current_device
|
||||
from ..hparams import get_infer_args, get_train_args
|
||||
from ..model import load_model, load_tokenizer
|
||||
@@ -105,7 +105,8 @@ def load_reference_model(
|
||||
def load_train_dataset(**kwargs) -> "Dataset":
|
||||
model_args, data_args, training_args, _, _ = get_train_args(kwargs)
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
dataset_module, _ = get_dataset(model_args, data_args, training_args, stage=kwargs["stage"], **tokenizer_module)
|
||||
template = get_template_and_fix_tokenizer(tokenizer_module["tokenizer"], data_args)
|
||||
dataset_module = get_dataset(template, model_args, data_args, training_args, kwargs["stage"], **tokenizer_module)
|
||||
return dataset_module["train_dataset"]
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user