support function calling

This commit is contained in:
hiyouga
2024-01-18 09:54:23 +08:00
parent 28135d787d
commit d9f1cae351
69 changed files with 1329 additions and 1085 deletions

View File

@@ -1,8 +1,10 @@
import tiktoken
from dataclasses import dataclass
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
from typing import TYPE_CHECKING, Callable, Dict, List, Optional, Tuple, Union
from ..extras.logging import get_logger
from .utils import Role
from .formatter import StringFormatter, FunctionFormatter, ToolFormatter
from llmtuner.extras.logging import get_logger
if TYPE_CHECKING:
from transformers import PreTrainedTokenizer
@@ -14,28 +16,30 @@ logger = get_logger(__name__)
@dataclass
class Template:
prefix: List[Union[str, Dict[str, str]]]
prompt: List[Union[str, Dict[str, str]]]
format_user: Callable
format_assistant: Callable
format_system: Callable
format_tool: Callable
format_observation: Callable
format_function: Callable
system: str
sep: List[Union[str, Dict[str, str]]]
separator: List[Union[str, Dict[str, str]]]
stop_words: List[str]
use_history: bool
efficient_eos: bool
replace_eos: bool
def encode_oneturn(
self,
tokenizer: "PreTrainedTokenizer",
query: str,
resp: str,
history: Optional[List[Tuple[str, str]]] = None,
system: Optional[str] = None
messages: List[Dict[str, str]],
system: str,
tool: str,
cutoff_len: int
) -> Tuple[List[int], List[int]]:
r"""
Returns a single pair of token ids representing prompt and response respectively.
"""
system, history = self._format(query, resp, history, system)
encoded_pairs = self._encode(tokenizer, system, history)
encoded_pairs = self._encode(tokenizer, messages, system, tool, cutoff_len)
prompt_ids = []
for query_ids, resp_ids in encoded_pairs[:-1]:
prompt_ids = prompt_ids + query_ids + resp_ids
@@ -46,109 +50,75 @@ class Template:
def encode_multiturn(
self,
tokenizer: "PreTrainedTokenizer",
query: str,
resp: str,
history: Optional[List[Tuple[str, str]]] = None,
system: Optional[str] = None
messages: List[Dict[str, str]],
system: str,
tool: str,
cutoff_len: int
) -> List[Tuple[List[int], List[int]]]:
r"""
Returns multiple pairs of token ids representing prompts and responses respectively.
"""
system, history = self._format(query, resp, history, system)
encoded_pairs = self._encode(tokenizer, system, history)
encoded_pairs = self._encode(tokenizer, messages, system, tool, cutoff_len)
return encoded_pairs
def _format(
self,
query: str,
resp: str,
history: Optional[List[Tuple[str, str]]] = None,
system: Optional[str] = None
) -> Tuple[str, List[Tuple[str, str]]]:
r"""
Aligns inputs to the standard format.
"""
system = system or self.system # use system if provided
history = history if (history and self.use_history) else []
history = history + [(query, resp)]
return system, history
def _get_special_ids(
self,
tokenizer: "PreTrainedTokenizer"
) -> Tuple[List[int], List[int]]:
if tokenizer.bos_token_id is not None and getattr(tokenizer, "add_bos_token", True):
bos_ids = [tokenizer.bos_token_id]
else: # baichuan, gpt2, qwen, yi models have no bos token
bos_ids = []
if tokenizer.eos_token_id is None:
raise ValueError("EOS token is required.")
if self.efficient_eos:
eos_ids = []
else:
eos_ids = [tokenizer.eos_token_id]
return bos_ids, eos_ids
def _encode(
self,
tokenizer: "PreTrainedTokenizer",
messages: List[Dict[str, str]],
system: str,
history: List[Tuple[str, str]]
tool: str,
cutoff_len: int
) -> List[Tuple[List[int], List[int]]]:
r"""
Encodes formatted inputs to pairs of token ids.
Turn 0: bos + prefix + sep + query resp + eos
Turn t: sep + bos + query resp + eos
Turn 0: system + query resp + eos
Turn t: sep + query resp + eos
"""
bos_ids, eos_ids = self._get_special_ids(tokenizer)
sep_ids = self._convert_inputs_to_ids(tokenizer, context=self.sep)
encoded_pairs = []
for turn_idx, (query, resp) in enumerate(history):
if turn_idx == 0:
prefix_ids = self._convert_inputs_to_ids(tokenizer, context=self.prefix, system=system)
if len(prefix_ids) != 0: # has prefix
prefix_ids = bos_ids + prefix_ids + sep_ids
else:
prefix_ids = bos_ids
else:
prefix_ids = sep_ids + bos_ids
system = system or self.system
encoded_messages = []
for i, message in enumerate(messages):
elements = []
if i == 0 and (system or tool):
tool_text = self.format_tool(content=tool)[0] if tool else ""
elements += self.format_system(content=(system + tool_text))
elif i > 0 and i % 2 == 0:
elements += self.separator
query_ids = self._convert_inputs_to_ids(tokenizer, context=self.prompt, query=query, idx=str(turn_idx+1))
resp_ids = self._convert_inputs_to_ids(tokenizer, context=[resp])
encoded_pairs.append((prefix_ids + query_ids, resp_ids + eos_ids))
return encoded_pairs
if message["role"] == Role.USER:
elements += self.format_user(content=message["content"], idx=str(i // 2))
elif message["role"] == Role.ASSISTANT:
elements += self.format_assistant(content=message["content"])
elif message["role"] == Role.OBSERVATION:
elements += self.format_observation(content=message["content"])
elif message["role"] == Role.FUNCTION:
elements += self.format_function(content=message["content"])
def _convert_inputs_to_ids(
encoded_messages.append(self._convert_elements_to_ids(tokenizer, elements))
return [(encoded_messages[i], encoded_messages[i+1]) for i in range(0, len(encoded_messages), 2)]
def _convert_elements_to_ids(
self,
tokenizer: "PreTrainedTokenizer",
context: List[Union[str, Dict[str, str]]],
system: Optional[str] = None,
query: Optional[str] = None,
idx: Optional[str] = None
elements: List[Union[str, Dict[str, str]]]
) -> List[int]:
r"""
Converts context to token ids.
Converts elements to token ids.
"""
if isinstance(getattr(tokenizer, "tokenizer", None), tiktoken.Encoding): # for tiktoken tokenizer (Qwen)
kwargs = dict(allowed_special="all")
else:
kwargs = dict(add_special_tokens=False)
token_ids = []
for elem in context:
for elem in elements:
if isinstance(elem, str):
elem = elem.replace("{{system}}", system, 1) if system is not None else elem
elem = elem.replace("{{query}}", query, 1) if query is not None else elem
elem = elem.replace("{{idx}}", idx, 1) if idx is not None else elem
if len(elem) != 0:
token_ids = token_ids + tokenizer.encode(elem, **kwargs)
token_ids = token_ids + tokenizer.encode(elem, add_special_tokens=False)
elif isinstance(elem, dict):
token_ids = token_ids + [tokenizer.convert_tokens_to_ids(elem.get("token"))]
elif isinstance(elem, set):
if "bos_token" in elem and tokenizer.bos_token_id:
token_ids = token_ids + [tokenizer.bos_token_id]
elif "eos_token" in elem and tokenizer.eos_token_id:
token_ids = token_ids + [tokenizer.eos_token_id]
else:
raise ValueError("Input must be string or dict[str, str], got {}".format(type(elem)))
raise ValueError("Input must be string, set[str] or dict[str, str], got {}".format(type(elem)))
return token_ids
@@ -159,23 +129,39 @@ class Llama2Template(Template):
def _encode(
self,
tokenizer: "PreTrainedTokenizer",
messages: List[Dict[str, str]],
system: str,
history: List[Tuple[str, str]]
tool: str,
cutoff_len: int
) -> List[Tuple[List[int], List[int]]]:
r"""
Encodes formatted inputs to pairs of token ids.
Turn 0: bos + prefix + query resp + eos
Turn t: bos + query resp + eos
Turn 0: system + query resp + eos
Turn t: sep + query resp + eos
"""
bos_ids, eos_ids = self._get_special_ids(tokenizer)
encoded_pairs = []
for turn_idx, (query, resp) in enumerate(history):
if turn_idx == 0: # llama2 template has no sep_ids
query = self.prefix[0].replace("{{system}}", system) + query
query_ids = self._convert_inputs_to_ids(tokenizer, context=self.prompt, query=query)
resp_ids = self._convert_inputs_to_ids(tokenizer, context=[resp])
encoded_pairs.append((bos_ids + query_ids, resp_ids + eos_ids))
return encoded_pairs
system = system or self.system
encoded_messages = []
for i, message in enumerate(messages):
elements = []
system_text = ""
if i == 0 and (system or tool):
tool_text = self.format_tool(content=tool)[0] if tool else ""
system_text = self.format_system(content=(system + tool_text))[0]
elif i > 0 and i % 2 == 0:
elements += self.separator
if message["role"] == Role.USER:
elements += self.format_user(content=system_text + message["content"], idx=str(i // 2))
elif message["role"] == Role.ASSISTANT:
elements += self.format_assistant(content=message["content"])
elif message["role"] == Role.OBSERVATION:
elements += self.format_observation(content=message["content"])
elif message["role"] == Role.FUNCTION:
elements += self.format_function(content=message["content"])
encoded_messages.append(self._convert_elements_to_ids(tokenizer, elements))
return [(encoded_messages[i], encoded_messages[i+1]) for i in range(0, len(encoded_messages), 2)]
templates: Dict[str, Template] = {}
@@ -183,23 +169,33 @@ templates: Dict[str, Template] = {}
def register_template(
name: str,
prefix: List[Union[str, Dict[str, str]]],
prompt: List[Union[str, Dict[str, str]]],
system: str,
sep: List[Union[str, Dict[str, str]]],
format_user: Optional[Callable] = None,
format_assistant: Optional[Callable] = None,
format_system: Optional[Callable] = None,
format_tool: Optional[Callable] = None,
format_observation: Optional[Callable] = None,
format_function: Optional[Callable] = None,
system: Optional[str] = "",
separator: Optional[List[Union[str, Dict[str, str]]]] = "",
stop_words: Optional[List[str]] = [],
use_history: Optional[bool] = True,
efficient_eos: Optional[bool] = False,
replace_eos: Optional[bool] = False
) -> None:
template_class = Llama2Template if name.startswith("llama2") else Template
templates[name] = template_class(
prefix=prefix,
prompt=prompt,
format_user=format_user or StringFormatter(container=["{{content}}"]),
format_assistant=format_assistant or StringFormatter(container=[
"{{content}}", {"eos_token"}
]),
format_system=format_system or StringFormatter(container=["{{content}}"]),
format_tool=format_tool or ToolFormatter(type="default"),
format_observation=format_observation or format_user,
format_function=format_function or FunctionFormatter(container=[
"Action: {{name}}\nAction Input: {{arguments}}", {"eos_token"}
]),
system=system,
sep=sep,
separator=separator,
stop_words=stop_words,
use_history=use_history,
efficient_eos=efficient_eos,
replace_eos=replace_eos
)
@@ -244,17 +240,14 @@ def get_template_and_fix_tokenizer(
register_template(
name="alpaca",
prefix=[
"{{system}}"
],
prompt=[
"### Instruction:\n{{query}}\n\n### Response:\n"
],
format_user=StringFormatter(container=[
"### Instruction:\n{{content}}\n\n### Response:\n"
]),
system=(
"Below is an instruction that describes a task. "
"Write a response that appropriately completes the request."
),
sep=[
separator=[
"\n\n"
]
)
@@ -262,17 +255,14 @@ register_template(
register_template(
name="aquila",
prefix=[
"{{system}}"
],
prompt=[
"Human: {{query}}###Assistant:"
],
format_user=StringFormatter(container=[
"Human: {{content}}###Assistant:"
]),
system=(
"A chat between a curious human and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the human's questions."
),
sep=[
separator=[
"###"
],
stop_words=[
@@ -284,46 +274,32 @@ register_template(
register_template(
name="baichuan",
prefix=[
"{{system}}"
],
prompt=[
{"token": "<reserved_102>"}, # user token
"{{query}}",
{"token": "<reserved_103>"} # assistant token
],
system="",
sep=[],
format_user=StringFormatter(container=[
{"token": "<reserved_102>"},
"{{content}}",
{"token": "<reserved_103>"}
]),
efficient_eos=True
)
register_template(
name="baichuan2",
prefix=[
"{{system}}"
],
prompt=[
{"token": "<reserved_106>"}, # user token
"{{query}}",
{"token": "<reserved_107>"} # assistant token
],
system="",
sep=[],
format_user=StringFormatter(container=[
{"token": "<reserved_106>"},
"{{content}}",
{"token": "<reserved_107>"}
]),
efficient_eos=True
)
register_template(
name="belle",
prefix=[
"{{system}}"
],
prompt=[
"Human: {{query}}\n\nBelle: "
],
system="",
sep=[
format_user=StringFormatter(container=[
"Human: {{content}}\n\nBelle: "
]),
separator=[
"\n\n"
]
)
@@ -331,31 +307,25 @@ register_template(
register_template(
name="bluelm",
prefix=[
"{{system}}"
],
prompt=[
format_user=StringFormatter(container=[
{"token": "[|Human|]:"},
"{{query}}",
"{{content}}",
{"token": "[|AI|]:"}
],
system="",
sep=[]
])
)
register_template(
name="chatglm2",
prefix=[
format_user=StringFormatter(container=[
"[Round {{idx}}]\n\n问:{{content}}\n\n答:"
]),
format_system=StringFormatter(container=[
{"token": "[gMASK]"},
{"token": "sop"},
"{{system}}"
],
prompt=[
"[Round {{idx}}]\n\n问:{{query}}\n\n答:"
],
system="",
sep=[
"{{content}}"
]),
separator=[
"\n\n"
],
efficient_eos=True
@@ -364,53 +334,35 @@ register_template(
register_template(
name="chatglm3",
prefix=[
{"token": "[gMASK]"},
{"token": "sop"},
{"token": "<|system|>"},
"\n",
"{{system}}"
],
prompt=[
format_user=StringFormatter(container=[
{"token": "<|user|>"},
"\n",
"{{query}}",
{"token": "<|assistant|>"},
"\n" # add an extra newline to avoid error in ChatGLM's process_response method
],
system=(
"You are ChatGLM3, a large language model trained by Zhipu.AI. "
"Follow the user's instructions carefully. Respond using markdown."
),
sep=[],
stop_words=[
"<|user|>",
"<|observation|>"
],
efficient_eos=True
)
register_template(
name="chatglm3_raw", # the raw template for tool tuning
prefix=[
{"token": "[gMASK]"},
{"token": "sop"},
{"token": "<|system|>"},
"\n",
"{{system}}"
],
prompt=[
{"token": "<|user|>"},
"\n",
"{{query}}",
"{{content}}",
{"token": "<|assistant|>"}
],
]),
format_assistant=StringFormatter(container=[
"\n"
"{{content}}"
]),
format_system=StringFormatter(container=[
{"token": "[gMASK]"},
{"token": "sop"},
{"token": "<|system|>"},
"\n",
"{{content}}"
]),
format_observation=StringFormatter(container=[
{"token": "<|observation|>"},
"\n",
"{{content}}"
]),
format_function=FunctionFormatter(container=[
"{{name}}\n{{arguments}}"
]),
system=(
"You are ChatGLM3, a large language model trained by Zhipu.AI. "
"Follow the user's instructions carefully. Respond using markdown."
),
sep=[],
stop_words=[
"<|user|>",
"<|observation|>"
@@ -421,47 +373,34 @@ register_template(
register_template(
name="codegeex2",
prefix=[
format_system=StringFormatter(container=[
{"token": "[gMASK]"},
{"token": "sop"},
"{{system}}"
],
prompt=[
"{{query}}"
],
system="",
sep=[]
"{{content}}"
])
)
register_template(
name="deepseek",
prefix=[
"{{system}}"
],
prompt=[
"User: {{query}}\n\nAssistant:"
],
system="",
sep=[]
format_user=StringFormatter(container=[
"User: {{content}}\n\nAssistant:"
])
)
register_template(
name="deepseekcoder",
prefix=[
"{{system}}"
],
prompt=[
"### Instruction:\n{{query}}\n### Response:\n"
],
format_user=StringFormatter(container=[
"### Instruction:\n{{content}}\n### Response:\n"
]),
system=(
"You are an AI programming assistant, utilizing the Deepseek Coder model, "
"developed by Deepseek Company, and you only answer questions related to computer science. "
"For politically sensitive questions, security and privacy issues, "
"and other non-computer science questions, you will refuse to answer\n"
),
sep=[
separator=[
"\n",
{"token": "<|EOT|>"},
"\n"
@@ -475,17 +414,14 @@ register_template(
register_template(
name="default",
prefix=[
"{{system}}"
],
prompt=[
"Human: {{query}}\nAssistant:"
],
format_user=StringFormatter(container=[
"Human: {{content}}\nAssistant: "
]),
system=(
"A chat between a curious user and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the user's questions."
"The assistant gives helpful, detailed, and polite answers to the user's questions.\n"
),
sep=[
separator=[
"\n"
]
)
@@ -493,14 +429,10 @@ register_template(
register_template(
name="falcon",
prefix=[
"{{system}}"
],
prompt=[
"User: {{query}}\nFalcon:"
],
system="",
sep=[
format_user=StringFormatter(container=[
"User: {{content}}\nFalcon:"
]),
separator=[
"\n"
],
efficient_eos=True
@@ -509,16 +441,12 @@ register_template(
register_template(
name="intern",
prefix=[
"{{system}}"
],
prompt=[
"<|User|>:{{query}}",
format_user=StringFormatter(container=[
"<|User|>:{{content}}",
{"token": "<eoh>"},
"\n<|Bot|>:"
],
system="",
sep=[
]),
separator=[
{"token": "<eoa>"},
"\n"
],
@@ -529,14 +457,44 @@ register_template(
)
register_template(
name="intern2",
format_user=StringFormatter(container=[
{"token": "[UNUSED_TOKEN_146]"},
"user\n{{content}}",
{"token": "[UNUSED_TOKEN_145]"},
"\n",
{"token": "[UNUSED_TOKEN_146]"},
"assistant\n"
]),
format_system=StringFormatter(container=[
{"token": "[UNUSED_TOKEN_146]"},
"system\n{{content}}",
{"token": "[UNUSED_TOKEN_145]"},
"\n"
]),
system=(
"You are an AI assistant whose name is InternLM (书生·浦语).\n"
"- InternLM (书生·浦语) is a conversational language model that is developed "
"by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n"
"- InternLM (书生·浦语) can understand and communicate fluently in the language chosen "
"by the user such as English and 中文."
),
separator=[
{"token": "[UNUSED_TOKEN_145]"},
"\n"
],
stop_words=[
"[UNUSED_TOKEN_145]"
],
efficient_eos=True
)
register_template(
name="llama2",
prefix=[
"<<SYS>>\n{{system}}\n<</SYS>>\n\n"
],
prompt=[
"[INST] {{query}} [/INST]"
],
format_user=StringFormatter(container=["[INST] {{content}} [/INST]"]),
format_system=StringFormatter(container=["<<SYS>>\n{{content}}\n<</SYS>>\n\n"]),
system=(
"You are a helpful, respectful and honest assistant. "
"Always answer as helpfully as possible, while being safe. "
@@ -546,49 +504,32 @@ register_template(
"If a question does not make any sense, or is not factually coherent, "
"explain why instead of answering something not correct. "
"If you don't know the answer to a question, please don't share false information."
),
sep=[]
)
)
register_template(
name="llama2_zh",
prefix=[
"<<SYS>>\n{{system}}\n<</SYS>>\n\n"
],
prompt=[
"[INST] {{query}} [/INST]"
],
system="You are a helpful assistant. 你是一个乐于助人的助手。",
sep=[]
format_user=StringFormatter(container=["[INST] {{content}} [/INST]"]),
format_system=StringFormatter(container=["<<SYS>>\n{{content}}\n<</SYS>>\n\n"]),
system="You are a helpful assistant. 你是一个乐于助人的助手。"
)
register_template(
name="mistral",
prefix=[
"{{system}}"
],
prompt=[
"[INST] {{query}} [/INST]"
],
system="",
sep=[]
format_user=StringFormatter(container=["[INST] {{content}} [/INST]"])
)
register_template(
name="openchat",
prefix=[
"{{system}}"
],
prompt=[
"GPT4 Correct User: {{query}}",
format_user=StringFormatter(container=[
"GPT4 Correct User: {{content}}",
{"token": "<|end_of_turn|>"},
"GPT4 Correct Assistant:"
],
system="",
sep=[
]),
separator=[
{"token": "<|end_of_turn|>"}
],
stop_words=[
@@ -600,14 +541,14 @@ register_template(
register_template(
name="qwen",
prefix=[
"<|im_start|>system\n{{system}}<|im_end|>"
],
prompt=[
"<|im_start|>user\n{{query}}<|im_end|>\n<|im_start|>assistant\n"
],
format_user=StringFormatter(container=[
"<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"
]),
format_system=StringFormatter(container=[
"<|im_start|>system\n{{content}}<|im_end|>\n"
]),
system="You are a helpful assistant.",
sep=[
separator=[
"\n"
],
stop_words=[
@@ -619,32 +560,28 @@ register_template(
register_template(
name="solar",
prefix=[
"{{system}}"
],
prompt=[
"### User:\n{{query}}\n\n### Assistant:\n"
],
system="",
sep=[]
format_user=StringFormatter(container=[
"### User:\n{{content}}\n\n### Assistant:\n"
])
)
register_template(
name="starchat",
prefix=[
{"token": "<|system|>"},
"\n{{system}}",
],
prompt=[
format_user=StringFormatter(container=[
{"token": "<|user|>"},
"\n{{query}}",
"\n{{content}}",
{"token": "<|end|>"},
"\n",
{"token": "<|assistant|>"}
],
system="",
sep=[
]),
format_system=StringFormatter(container=[
{"token": "<|system|>"},
"\n{{content}}",
{"token": "<|end|>"},
"\n"
]),
separator=[
{"token": "<|end|>"},
"\n"
],
@@ -656,75 +593,55 @@ register_template(
register_template(
name="vanilla",
prefix=[],
prompt=[
"{{query}}"
],
system="",
sep=[],
use_history=False
name="vanilla"
)
register_template(
name="vicuna",
prefix=[
"{{system}}"
],
prompt=[
"USER: {{query}} ASSISTANT:"
],
format_user=StringFormatter(container=[
"USER: {{content}} ASSISTANT:"
]),
system=(
"A chat between a curious user and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the user's questions."
),
sep=[]
)
)
register_template(
name="xuanyuan",
prefix=[
"{{system}}"
],
prompt=[
"Human: {{query}} Assistant:"
],
format_user=StringFormatter(container=[
"Human: {{content}} Assistant:"
]),
system=(
"以下是用户和人工智能助手之间的对话。用户以Human开头人工智能助手以Assistant开头"
"会对人类提出的问题给出有帮助、高质量、详细和礼貌的回答,并且总是拒绝参与与不道德、"
"不安全、有争议、政治敏感等相关的话题、问题和指示。\n"
),
sep=[]
)
)
register_template(
name="xverse",
prefix=[
"{{system}}"
],
prompt=[
"Human: {{query}}\n\nAssistant: "
],
system="",
sep=[]
format_user=StringFormatter(container=[
"Human: {{content}}\n\nAssistant: "
])
)
register_template(
name="yayi",
prefix=[
{"token": "<|System|>"},
":\n{{system}}"
],
prompt=[
format_user=StringFormatter(container=[
{"token": "<|Human|>"},
":\n{{query}}\n\n",
":\n{{content}}\n\n",
{"token": "<|YaYi|>"},
":"
],
]),
format_system=StringFormatter(container=[
{"token": "<|System|>"},
":\n{{content}}\n\n"
]),
system=(
"You are a helpful, respectful and honest assistant named YaYi "
"developed by Beijing Wenge Technology Co.,Ltd. "
@@ -736,7 +653,7 @@ register_template(
"explain why instead of answering something not correct. "
"If you don't know the answer to a question, please don't share false information."
),
sep=[
separator=[
"\n\n"
],
stop_words=[
@@ -747,14 +664,10 @@ register_template(
register_template(
name="yi",
prefix=[
"{{system}}"
],
prompt=[
"<|im_start|>user\n{{query}}<|im_end|>\n<|im_start|>assistant\n"
],
system="",
sep=[
format_user=StringFormatter(container=[
"<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"
]),
separator=[
"\n"
],
stop_words=[
@@ -766,15 +679,11 @@ register_template(
register_template(
name="yuan",
prefix=[
"{{system}}"
],
prompt=[
"{{query}}",
format_user=StringFormatter(container=[
"{{content}}",
{"token": "<sep>"}
],
system="",
sep=[
]),
separator=[
"\n"
],
stop_words=[
@@ -786,30 +695,25 @@ register_template(
register_template(
name="zephyr",
prefix=[
"<|system|>\n{{system}}</s>",
],
prompt=[
"<|user|>\n{{query}}</s><|assistant|>"
],
system="You are a friendly chatbot who always responds in the style of a pirate",
sep=[]
format_user=StringFormatter(container=[
"<|user|>\n{{content}}</s><|assistant|>"
]),
format_system=StringFormatter(container=[
"<|system|>\n{{content}}</s>",
]),
system="You are a friendly chatbot who always responds in the style of a pirate"
)
register_template(
name="ziya",
prefix=[
"{{system}}"
],
prompt=[
format_user=StringFormatter(container=[
{"token": "<human>"},
":{{query}}\n",
":{{content}}\n",
{"token": "<bot>"},
":"
],
system="",
sep=[
]),
separator=[
"\n"
]
)