diff --git a/README.md b/README.md index 72200163..5f7bb4e1 100644 --- a/README.md +++ b/README.md @@ -106,17 +106,18 @@ Choose your path: ## Blogs +- [Fine-tune Llama3.1-70B for Medical Diagnosis using LLaMA-Factory](https://docs.alayanew.com/docs/documents/bestPractice/bigModel/llama70B/) (Chinese) - [A One-Stop Code-Free Model Reinforcement Learning and Deployment Platform based on LLaMA-Factory and EasyR1](https://aws.amazon.com/cn/blogs/china/building-llm-model-hub-based-on-llamafactory-and-easyr1/) (Chinese) -- [Fine-tune Qwen2.5-VL for Autonomous Driving using LLaMA-Factory](https://docs.alayanew.com/docs/documents/useGuide/LLaMAFactory/mutiple/?utm_source=LLaMA-Factory) (Chinese) - [How Apoidea Group enhances visual information extraction from banking documents with multimodal models using LLaMA-Factory on Amazon SageMaker HyperPod](https://aws.amazon.com/cn/blogs/machine-learning/how-apoidea-group-enhances-visual-information-extraction-from-banking-documents-with-multimodal-models-using-llama-factory-on-amazon-sagemaker-hyperpod/) (English) - [Easy Dataset × LLaMA Factory: Enabling LLMs to Efficiently Learn Domain Knowledge](https://buaa-act.feishu.cn/wiki/GVzlwYcRFiR8OLkHbL6cQpYin7g) (English)
All Blogs +- [Fine-tune Qwen2.5-VL for Autonomous Driving using LLaMA-Factory](https://docs.alayanew.com/docs/documents/useGuide/LLaMAFactory/mutiple/?utm_source=LLaMA-Factory) (Chinese) - [LLaMA Factory: Fine-tuning the DeepSeek-R1-Distill-Qwen-7B Model for News Classifier](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory_deepseek_r1_distill_7b) (Chinese) - [A One-Stop Code-Free Model Fine-Tuning \& Deployment Platform based on SageMaker and LLaMA-Factory](https://aws.amazon.com/cn/blogs/china/a-one-stop-code-free-model-fine-tuning-deployment-platform-based-on-sagemaker-and-llama-factory/) (Chinese) - [LLaMA Factory Multi-Modal Fine-Tuning Practice: Fine-Tuning Qwen2-VL for Personal Tourist Guide](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory_qwen2vl) (Chinese) -- [LLaMA Factory: Fine-tuning the LLaMA3 Model for Role-Playing](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory) (Chinese) +- [LLaMA Factory: Fine-tuning Llama3 for Role-Playing](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory) (Chinese)
@@ -268,8 +269,9 @@ Choose your path: | [Falcon-H1](https://huggingface.co/tiiuae) | 0.5B/1.5B/3B/7B/34B | falcon_h1 | | [Gemma/Gemma 2/CodeGemma](https://huggingface.co/google) | 2B/7B/9B/27B | gemma/gemma2 | | [Gemma 3/Gemma 3n](https://huggingface.co/google) | 1B/4B/6B/8B/12B/27B | gemma3/gemma3n | -| [GLM-4/GLM-4-0414/GLM-Z1](https://huggingface.co/THUDM) | 9B/32B | glm4/glmz1 | -| [GLM-4.1V](https://huggingface.co/THUDM)* | 9B | glm4v | +| [GLM-4/GLM-4-0414/GLM-Z1](https://huggingface.co/zai-org) | 9B/32B | glm4/glmz1 | +| [GLM-4.1V](https://huggingface.co/zai-org)* | 9B | glm4v | +| [GLM-4.5](https://huggingface.co/zai-org)* | 106B/355B | glm4_moe | | [GPT-2](https://huggingface.co/openai-community) | 0.1B/0.4B/0.8B/1.5B | - | | [Granite 3.0-3.3](https://huggingface.co/ibm-granite) | 1B/2B/3B/8B | granite3 | | [Granite 4](https://huggingface.co/ibm-granite) | 7B | granite4 | diff --git a/README_zh.md b/README_zh.md index 03901e19..f759a168 100644 --- a/README_zh.md +++ b/README_zh.md @@ -108,17 +108,18 @@ https://github.com/user-attachments/assets/43b700c6-a178-41db-b1f8-8190a5d3fcfc ## 官方博客 +- [使用 LLaMA-Factory 微调 Llama3.1-70B 医学诊断模型](https://docs.alayanew.com/docs/documents/bestPractice/bigModel/llama70B/)(中文) - [基于 LLaMA-Factory 和 EasyR1 打造一站式无代码大模型强化学习和部署平台 LLM Model Hub](https://aws.amazon.com/cn/blogs/china/building-llm-model-hub-based-on-llamafactory-and-easyr1/)(中文) -- [使用 LLaMA-Factory 微调 Qwen2.5-VL 实现自动驾驶场景微调](https://docs.alayanew.com/docs/documents/useGuide/LLaMAFactory/mutiple/?utm_source=LLaMA-Factory)(中文) - [通过亚马逊 SageMaker HyperPod 上的 LLaMA-Factory 增强多模态模型银行文档的视觉信息提取](https://aws.amazon.com/cn/blogs/machine-learning/how-apoidea-group-enhances-visual-information-extraction-from-banking-documents-with-multimodal-models-using-llama-factory-on-amazon-sagemaker-hyperpod/)(英文) - [Easy Dataset × LLaMA Factory: 让大模型高效学习领域知识](https://buaa-act.feishu.cn/wiki/KY9xwTGs1iqHrRkjXBwcZP9WnL9)(中文)
全部博客 +- [使用 LLaMA-Factory 微调 Qwen2.5-VL 实现自动驾驶场景微调](https://docs.alayanew.com/docs/documents/useGuide/LLaMAFactory/mutiple/?utm_source=LLaMA-Factory)(中文) - [LLaMA Factory:微调 DeepSeek-R1-Distill-Qwen-7B 模型实现新闻标题分类器](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory_deepseek_r1_distill_7b)(中文) - [基于 Amazon SageMaker 和 LLaMA-Factory 打造一站式无代码模型微调部署平台 Model Hub](https://aws.amazon.com/cn/blogs/china/a-one-stop-code-free-model-fine-tuning-deployment-platform-based-on-sagemaker-and-llama-factory/)(中文) - [LLaMA Factory 多模态微调实践:微调 Qwen2-VL 构建文旅大模型](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory_qwen2vl)(中文) -- [LLaMA Factory:微调LLaMA3模型实现角色扮演](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory)(中文) +- [LLaMA Factory:微调 Llama3 模型实现角色扮演](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory)(中文)
@@ -270,8 +271,9 @@ https://github.com/user-attachments/assets/43b700c6-a178-41db-b1f8-8190a5d3fcfc | [Falcon-H1](https://huggingface.co/tiiuae) | 0.5B/1.5B/3B/7B/34B | falcon_h1 | | [Gemma/Gemma 2/CodeGemma](https://huggingface.co/google) | 2B/7B/9B/27B | gemma/gemma2 | | [Gemma 3/Gemma 3n](https://huggingface.co/google) | 1B/4B/6B/8B/12B/27B | gemma3/gemma3n | -| [GLM-4/GLM-4-0414/GLM-Z1](https://huggingface.co/THUDM) | 9B/32B | glm4/glmz1 | -| [GLM-4.1V](https://huggingface.co/THUDM)* | 9B | glm4v | +| [GLM-4/GLM-4-0414/GLM-Z1](https://huggingface.co/zai-org) | 9B/32B | glm4/glmz1 | +| [GLM-4.1V](https://huggingface.co/zai-org)* | 9B | glm4v | +| [GLM-4.5](https://huggingface.co/zai-org)* | 106B/355B | glm4_moe | | [GPT-2](https://huggingface.co/openai-community) | 0.1B/0.4B/0.8B/1.5B | - | | [Granite 3.0-3.3](https://huggingface.co/ibm-granite) | 1B/2B/3B/8B | granite3 | | [Granite 4](https://huggingface.co/ibm-granite) | 7B | granite4 |