diff --git a/src/utils/common.py b/src/utils/common.py index 648f226f..ea15de5e 100644 --- a/src/utils/common.py +++ b/src/utils/common.py @@ -97,7 +97,7 @@ def _init_adapter( if finetuning_args.finetuning_type == "lora": logger.info("Fine-tuning method: LoRA") - lastest_checkpoint = None + latest_checkpoint = None if model_args.checkpoint_dir is not None: assert os.path.exists(os.path.join(model_args.checkpoint_dir[0], WEIGHTS_NAME)), \ @@ -106,7 +106,7 @@ def _init_adapter( "The given checkpoint may be not a LoRA checkpoint, please specify `--finetuning_type full/freeze` instead." if (is_trainable and model_args.resume_lora_training) or (not is_mergeable): # continually train on the lora weights - checkpoints_to_merge, lastest_checkpoint = model_args.checkpoint_dir[:-1], model_args.checkpoint_dir[-1] + checkpoints_to_merge, latest_checkpoint = model_args.checkpoint_dir[:-1], model_args.checkpoint_dir[-1] else: checkpoints_to_merge = model_args.checkpoint_dir @@ -117,10 +117,10 @@ def _init_adapter( if len(checkpoints_to_merge) > 0: logger.info("Merged {} model checkpoint(s).".format(len(checkpoints_to_merge))) - if lastest_checkpoint is not None: # resume lora training or quantized inference - model = PeftModel.from_pretrained(model, lastest_checkpoint, is_trainable=is_trainable) + if latest_checkpoint is not None: # resume lora training or quantized inference + model = PeftModel.from_pretrained(model, latest_checkpoint, is_trainable=is_trainable) - if is_trainable and lastest_checkpoint is None: # create new lora weights while training + if is_trainable and latest_checkpoint is None: # create new lora weights while training lora_config = LoraConfig( task_type=TaskType.CAUSAL_LM, inference_mode=False,