mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-05 21:22:50 +08:00
add configurer
Former-commit-id: 2740aa9cbbcfc6dcfef82915b7db4e0f8b2c1bae
This commit is contained in:
parent
bd03307bbd
commit
d24d2f0458
@ -1,20 +1,20 @@
|
|||||||
from typing import TYPE_CHECKING, Optional, Tuple
|
from typing import TYPE_CHECKING, Optional, Tuple
|
||||||
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
|
||||||
from transformers.integrations import is_deepspeed_zero3_enabled
|
from transformers.integrations import is_deepspeed_zero3_enabled
|
||||||
from transformers.utils.versions import require_version
|
from transformers.utils.versions import require_version
|
||||||
from trl import AutoModelForCausalLMWithValueHead
|
from trl import AutoModelForCausalLMWithValueHead
|
||||||
|
|
||||||
|
import llmtuner.model.patcher as patcher
|
||||||
from llmtuner.extras.logging import get_logger
|
from llmtuner.extras.logging import get_logger
|
||||||
from llmtuner.extras.misc import count_parameters, get_current_device, try_download_model_from_ms
|
from llmtuner.extras.misc import count_parameters, try_download_model_from_ms
|
||||||
from llmtuner.extras.packages import is_flash_attn2_available
|
|
||||||
from llmtuner.hparams import FinetuningArguments
|
|
||||||
from llmtuner.model.adapter import init_adapter
|
from llmtuner.model.adapter import init_adapter
|
||||||
from llmtuner.model.patches import patch_config, patch_model, patch_valuehead_model, patch_tokenizer, register_autoclass
|
from llmtuner.model.utils import (
|
||||||
from llmtuner.model.utils import load_valuehead_params, prepare_model_for_training, resize_embedding_layer
|
load_valuehead_params, prepare_model_for_training, resize_embedding_layer, register_autoclass
|
||||||
|
)
|
||||||
|
|
||||||
if TYPE_CHECKING:
|
if TYPE_CHECKING:
|
||||||
from transformers import PreTrainedModel, PreTrainedTokenizer
|
from transformers import PreTrainedModel, PreTrainedTokenizer
|
||||||
from llmtuner.hparams import ModelArguments
|
from llmtuner.hparams import ModelArguments, FinetuningArguments
|
||||||
|
|
||||||
|
|
||||||
logger = get_logger(__name__)
|
logger = get_logger(__name__)
|
||||||
@ -55,45 +55,15 @@ def load_model_and_tokenizer(
|
|||||||
padding_side="right", # training with left-padded tensors in fp16 precision may cause overflow
|
padding_side="right", # training with left-padded tensors in fp16 precision may cause overflow
|
||||||
**config_kwargs
|
**config_kwargs
|
||||||
)
|
)
|
||||||
patch_tokenizer(tokenizer)
|
|
||||||
|
|
||||||
config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
|
config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
|
||||||
patch_config(config, model_args, is_trainable)
|
|
||||||
|
|
||||||
# Set FlashAttention-2
|
patcher.patch_tokenizer(tokenizer)
|
||||||
if model_args.flash_attn and is_flash_attn2_available():
|
patcher.patch_config(config, model_args, is_trainable)
|
||||||
config_kwargs["use_flash_attention_2"] = True
|
patcher.configure_rope(config, model_args, is_trainable)
|
||||||
logger.info("Using FlashAttention-2 for faster training and inference.")
|
patcher.configure_flashattn(config, model_args)
|
||||||
|
patcher.configure_longlora(config, model_args, is_trainable)
|
||||||
|
patcher.configure_quantization(config, config_kwargs, model_args)
|
||||||
|
|
||||||
# Quantization configurations (using gptq or awq)
|
|
||||||
if getattr(config, "quantization_config", None):
|
|
||||||
model_args.quantization_bit = None # remove bnb quantization
|
|
||||||
config_kwargs["device_map"] = {"": get_current_device()}
|
|
||||||
quantization_config = getattr(config, "quantization_config", None)
|
|
||||||
logger.info("Loading {}-bit pre-quantized model.".format(quantization_config.get("bits", -1)))
|
|
||||||
|
|
||||||
# Quantization configurations (using bitsandbytes)
|
|
||||||
if model_args.quantization_bit is not None:
|
|
||||||
if is_deepspeed_zero3_enabled():
|
|
||||||
raise ValueError("DeepSpeed ZeRO-3 is incompatible with quantization.")
|
|
||||||
|
|
||||||
if model_args.quantization_bit == 8:
|
|
||||||
require_version("bitsandbytes>=0.37.0", "To fix: pip install bitsandbytes>=0.37.0")
|
|
||||||
config_kwargs["quantization_config"] = BitsAndBytesConfig(load_in_8bit=True)
|
|
||||||
|
|
||||||
if model_args.quantization_bit == 4:
|
|
||||||
require_version("bitsandbytes>=0.39.0", "To fix: pip install bitsandbytes>=0.39.0")
|
|
||||||
config_kwargs["quantization_config"] = BitsAndBytesConfig(
|
|
||||||
load_in_4bit=True,
|
|
||||||
bnb_4bit_compute_dtype=model_args.compute_dtype,
|
|
||||||
bnb_4bit_use_double_quant=model_args.double_quantization,
|
|
||||||
bnb_4bit_quant_type=model_args.quantization_type
|
|
||||||
)
|
|
||||||
|
|
||||||
config_kwargs["device_map"] = {"": get_current_device()}
|
|
||||||
logger.info("Quantizing model to {} bit.".format(model_args.quantization_bit))
|
|
||||||
|
|
||||||
# Load pre-trained models (without valuehead)
|
|
||||||
model = AutoModelForCausalLM.from_pretrained(
|
model = AutoModelForCausalLM.from_pretrained(
|
||||||
model_args.model_name_or_path,
|
model_args.model_name_or_path,
|
||||||
config=config,
|
config=config,
|
||||||
@ -101,23 +71,20 @@ def load_model_and_tokenizer(
|
|||||||
low_cpu_mem_usage=(not is_deepspeed_zero3_enabled()),
|
low_cpu_mem_usage=(not is_deepspeed_zero3_enabled()),
|
||||||
**config_kwargs
|
**config_kwargs
|
||||||
)
|
)
|
||||||
patch_model(model)
|
patcher.patch_model(model)
|
||||||
register_autoclass(config, model, tokenizer)
|
register_autoclass(config, model, tokenizer)
|
||||||
resize_embedding_layer(model, tokenizer)
|
resize_embedding_layer(model, tokenizer)
|
||||||
|
|
||||||
# Initialize adapters
|
|
||||||
model = prepare_model_for_training(model=model, finetuning_args=finetuning_args) if is_trainable else model
|
model = prepare_model_for_training(model=model, finetuning_args=finetuning_args) if is_trainable else model
|
||||||
model = init_adapter(model, model_args, finetuning_args, is_trainable)
|
model = init_adapter(model, model_args, finetuning_args, is_trainable)
|
||||||
|
|
||||||
# Prepare model with valuehead for RLHF
|
|
||||||
if add_valuehead:
|
if add_valuehead:
|
||||||
model: "AutoModelForCausalLMWithValueHead" = AutoModelForCausalLMWithValueHead.from_pretrained(model)
|
model: "AutoModelForCausalLMWithValueHead" = AutoModelForCausalLMWithValueHead.from_pretrained(model)
|
||||||
patch_valuehead_model(model)
|
patcher.patch_valuehead_model(model)
|
||||||
vhead_params = load_valuehead_params(model_args)
|
vhead_params = load_valuehead_params(model_args)
|
||||||
if vhead_params is not None:
|
if vhead_params is not None:
|
||||||
model.load_state_dict(vhead_params, strict=False)
|
model.load_state_dict(vhead_params, strict=False)
|
||||||
|
|
||||||
# Prepare model for inference
|
|
||||||
if not is_trainable:
|
if not is_trainable:
|
||||||
model.requires_grad_(False) # fix all model params
|
model.requires_grad_(False) # fix all model params
|
||||||
model = model.to(model_args.compute_dtype) if not getattr(model, "quantization_method", None) else model
|
model = model.to(model_args.compute_dtype) if not getattr(model, "quantization_method", None) else model
|
||||||
|
@ -1,12 +1,15 @@
|
|||||||
import math
|
import math
|
||||||
import torch
|
import torch
|
||||||
from types import MethodType
|
from types import MethodType
|
||||||
from typing import TYPE_CHECKING
|
from typing import TYPE_CHECKING, Any, Dict
|
||||||
|
|
||||||
from transformers import PreTrainedModel, PreTrainedTokenizerBase
|
from transformers import BitsAndBytesConfig, PreTrainedModel, PreTrainedTokenizerBase
|
||||||
|
from transformers.integrations import is_deepspeed_zero3_enabled
|
||||||
|
from transformers.utils.versions import require_version
|
||||||
|
|
||||||
from llmtuner.extras.logging import get_logger
|
from llmtuner.extras.logging import get_logger
|
||||||
from llmtuner.extras.misc import infer_optim_dtype
|
from llmtuner.extras.misc import get_current_device, infer_optim_dtype
|
||||||
|
from llmtuner.extras.packages import is_flash_attn2_available
|
||||||
|
|
||||||
if TYPE_CHECKING:
|
if TYPE_CHECKING:
|
||||||
from transformers import PretrainedConfig, PreTrainedTokenizer
|
from transformers import PretrainedConfig, PreTrainedTokenizer
|
||||||
@ -15,17 +18,53 @@ if TYPE_CHECKING:
|
|||||||
|
|
||||||
|
|
||||||
logger = get_logger(__name__)
|
logger = get_logger(__name__)
|
||||||
|
SUPPORTED_CLASS_FOR_S2ATTN = [] # TODO: add llama
|
||||||
|
|
||||||
|
|
||||||
def patch_config(config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool):
|
def configure_flashattn(config_kwargs: Dict[str, Any], model_args: "ModelArguments"):
|
||||||
if model_args.compute_dtype is None: # priority: bf16 > fp16 > fp32
|
if model_args.flash_attn and is_flash_attn2_available():
|
||||||
model_args.compute_dtype = infer_optim_dtype(model_dtype=getattr(config, "torch_dtype", None))
|
config_kwargs["use_flash_attention_2"] = True
|
||||||
setattr(config, "torch_dtype", model_args.compute_dtype)
|
logger.info("Using FlashAttention-2 for faster training and inference.")
|
||||||
|
|
||||||
if getattr(config, "model_type", None) == "qwen":
|
|
||||||
for dtype_name, dtype in [("fp16", torch.float16), ("bf16", torch.bfloat16), ("fp32", torch.float32)]:
|
|
||||||
setattr(config, dtype_name, getattr(config, "torch_dtype", None) == dtype)
|
|
||||||
|
|
||||||
|
def configure_longlora(config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool):
|
||||||
|
if is_trainable and model_args.shift_attn:
|
||||||
|
if getattr(config, "model_type", None) in SUPPORTED_CLASS_FOR_S2ATTN:
|
||||||
|
setattr(config, "group_size_ratio", 0.25)
|
||||||
|
logger.info("Using shift short attention with group_size_ratio=1/4.")
|
||||||
|
else:
|
||||||
|
logger.warning("Current model does not support shift short attention.")
|
||||||
|
|
||||||
|
|
||||||
|
def configure_quantization(config: "PretrainedConfig", config_kwargs: Dict[str, Any], model_args: "ModelArguments"):
|
||||||
|
if getattr(config, "quantization_config", None): # gptq or awq
|
||||||
|
model_args.quantization_bit = None # remove bnb quantization
|
||||||
|
config_kwargs["device_map"] = {"": get_current_device()}
|
||||||
|
quantization_config = getattr(config, "quantization_config", None)
|
||||||
|
logger.info("Loading {}-bit pre-quantized model.".format(quantization_config.get("bits", -1)))
|
||||||
|
|
||||||
|
if model_args.quantization_bit is not None: # bnb
|
||||||
|
if is_deepspeed_zero3_enabled():
|
||||||
|
raise ValueError("DeepSpeed ZeRO-3 is incompatible with quantization.")
|
||||||
|
|
||||||
|
if model_args.quantization_bit == 8:
|
||||||
|
require_version("bitsandbytes>=0.37.0", "To fix: pip install bitsandbytes>=0.37.0")
|
||||||
|
config_kwargs["quantization_config"] = BitsAndBytesConfig(load_in_8bit=True)
|
||||||
|
|
||||||
|
if model_args.quantization_bit == 4:
|
||||||
|
require_version("bitsandbytes>=0.39.0", "To fix: pip install bitsandbytes>=0.39.0")
|
||||||
|
config_kwargs["quantization_config"] = BitsAndBytesConfig(
|
||||||
|
load_in_4bit=True,
|
||||||
|
bnb_4bit_compute_dtype=model_args.compute_dtype,
|
||||||
|
bnb_4bit_use_double_quant=model_args.double_quantization,
|
||||||
|
bnb_4bit_quant_type=model_args.quantization_type
|
||||||
|
)
|
||||||
|
|
||||||
|
config_kwargs["device_map"] = {"": get_current_device()}
|
||||||
|
logger.info("Quantizing model to {} bit.".format(model_args.quantization_bit))
|
||||||
|
|
||||||
|
|
||||||
|
def configure_rope(config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool):
|
||||||
if model_args.rope_scaling is not None:
|
if model_args.rope_scaling is not None:
|
||||||
if not hasattr(config, "rope_scaling"):
|
if not hasattr(config, "rope_scaling"):
|
||||||
logger.warning("Current model does not support RoPE scaling.")
|
logger.warning("Current model does not support RoPE scaling.")
|
||||||
@ -51,14 +90,15 @@ def patch_config(config: "PretrainedConfig", model_args: "ModelArguments", is_tr
|
|||||||
model_args.rope_scaling, scaling_factor
|
model_args.rope_scaling, scaling_factor
|
||||||
))
|
))
|
||||||
|
|
||||||
# Set shift short attention (S^2-Attn)
|
|
||||||
if is_trainable and model_args.shift_attn:
|
def patch_config(config: "PretrainedConfig", model_args: "ModelArguments"):
|
||||||
logger.warning("Shift short attention is temporarily invalid due to breaking changes.")
|
if model_args.compute_dtype is None: # priority: bf16 > fp16 > fp32
|
||||||
# if getattr(config, "model_type", None) == "llama":
|
model_args.compute_dtype = infer_optim_dtype(model_dtype=getattr(config, "torch_dtype", None))
|
||||||
# setattr(config, "group_size_ratio", 0.25)
|
setattr(config, "torch_dtype", model_args.compute_dtype)
|
||||||
# logger.info("Using shift short attention with group_size_ratio=1/4.")
|
|
||||||
# else:
|
if getattr(config, "model_type", None) == "qwen":
|
||||||
# logger.warning("Current model does not support shift short attention.")
|
for dtype_name, dtype in [("fp16", torch.float16), ("bf16", torch.bfloat16), ("fp32", torch.float32)]:
|
||||||
|
setattr(config, dtype_name, getattr(config, "torch_dtype", None) == dtype)
|
||||||
|
|
||||||
|
|
||||||
def patch_model(model: "PreTrainedModel"):
|
def patch_model(model: "PreTrainedModel"):
|
||||||
@ -83,12 +123,3 @@ def patch_valuehead_model(model: "AutoModelForCausalLMWithValueHead"):
|
|||||||
def patch_tokenizer(tokenizer: "PreTrainedTokenizer"):
|
def patch_tokenizer(tokenizer: "PreTrainedTokenizer"):
|
||||||
if "PreTrainedTokenizerBase" not in str(tokenizer._pad.__func__):
|
if "PreTrainedTokenizerBase" not in str(tokenizer._pad.__func__):
|
||||||
tokenizer._pad = MethodType(PreTrainedTokenizerBase._pad, tokenizer)
|
tokenizer._pad = MethodType(PreTrainedTokenizerBase._pad, tokenizer)
|
||||||
|
|
||||||
|
|
||||||
def register_autoclass(config: "PretrainedConfig", model: "PreTrainedModel", tokenizer: "PreTrainedTokenizerBase"):
|
|
||||||
if "AutoConfig" in getattr(config, "auto_map", {}):
|
|
||||||
config.__class__.register_for_auto_class()
|
|
||||||
if "AutoModelForCausalLM" in getattr(config, "auto_map", {}):
|
|
||||||
model.__class__.register_for_auto_class()
|
|
||||||
if "AutoTokenizer" in tokenizer.init_kwargs.get("auto_map", {}):
|
|
||||||
tokenizer.__class__.register_for_auto_class()
|
|
@ -9,8 +9,7 @@ from llmtuner.extras.logging import get_logger
|
|||||||
from llmtuner.hparams import ModelArguments, FinetuningArguments
|
from llmtuner.hparams import ModelArguments, FinetuningArguments
|
||||||
|
|
||||||
if TYPE_CHECKING:
|
if TYPE_CHECKING:
|
||||||
from transformers.modeling_utils import PreTrainedModel
|
from transformers import PretrainedConfig, PreTrainedModel, PreTrainedTokenizer
|
||||||
from transformers.tokenization_utils import PreTrainedTokenizer
|
|
||||||
from llmtuner.hparams import DataArguments
|
from llmtuner.hparams import DataArguments
|
||||||
|
|
||||||
|
|
||||||
@ -183,3 +182,12 @@ def resize_embedding_layer(model: "PreTrainedModel", tokenizer: "PreTrainedToken
|
|||||||
model.resize_token_embeddings(len(tokenizer), pad_to_multiple_of=64)
|
model.resize_token_embeddings(len(tokenizer), pad_to_multiple_of=64)
|
||||||
new_embedding_size = model.get_input_embeddings().weight.size(0)
|
new_embedding_size = model.get_input_embeddings().weight.size(0)
|
||||||
logger.info("Resized token embeddings from {} to {}.".format(current_embedding_size, new_embedding_size))
|
logger.info("Resized token embeddings from {} to {}.".format(current_embedding_size, new_embedding_size))
|
||||||
|
|
||||||
|
|
||||||
|
def register_autoclass(config: "PretrainedConfig", model: "PreTrainedModel", tokenizer: "PreTrainedTokenizer"):
|
||||||
|
if "AutoConfig" in getattr(config, "auto_map", {}):
|
||||||
|
config.__class__.register_for_auto_class()
|
||||||
|
if "AutoModelForCausalLM" in getattr(config, "auto_map", {}):
|
||||||
|
model.__class__.register_for_auto_class()
|
||||||
|
if "AutoTokenizer" in tokenizer.init_kwargs.get("auto_map", {}):
|
||||||
|
tokenizer.__class__.register_for_auto_class()
|
||||||
|
Loading…
x
Reference in New Issue
Block a user