mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2026-01-13 09:30:34 +08:00
[v1] add renderer ut (#9722)
This commit is contained in:
@@ -12,8 +12,13 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import json
|
||||
|
||||
import pytest
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
from llamafactory.v1.config import DataArguments
|
||||
from llamafactory.v1.core.data_engine import DataEngine
|
||||
from llamafactory.v1.core.utils.rendering import Renderer
|
||||
from llamafactory.v1.utils.types import Processor
|
||||
|
||||
@@ -23,12 +28,54 @@ HF_MESSAGES = [
|
||||
{"role": "user", "content": "What is LLM?"},
|
||||
{"role": "assistant", "content": "LLM stands for Large Language Model."},
|
||||
]
|
||||
|
||||
V1_MESSAGES = [
|
||||
{"role": "system", "content": [{"type": "text", "value": "You are a helpful assistant."}]},
|
||||
{"role": "user", "content": [{"type": "text", "value": "What is LLM?"}]},
|
||||
{"role": "assistant", "content": [{"type": "text", "value": "LLM stands for Large Language Model."}]},
|
||||
]
|
||||
|
||||
HF_MESSAGES_WITH_TOOLS = [
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": "What is 6*8?"},
|
||||
{
|
||||
"role": "assistant",
|
||||
"tool_calls": [{"type": "function", "function": {"name": "multiply", "arguments": {"a": 6, "b": 8}}}],
|
||||
},
|
||||
{"role": "tool", "content": "48."},
|
||||
{"role": "assistant", "content": "The result of 6*8 is 48."},
|
||||
]
|
||||
|
||||
V1_MESSAGES_WITH_TOOLS = [
|
||||
{"role": "system", "content": [{"type": "text", "value": "You are a helpful assistant."}]},
|
||||
{"role": "user", "content": [{"type": "text", "value": "What is 6*8?"}]},
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": [{"type": "tool_call", "value": json.dumps({"name": "multiply", "arguments": {"a": 6, "b": 8}})}],
|
||||
"loss_weight": 0.0,
|
||||
},
|
||||
{"role": "tool", "content": [{"type": "text", "value": "48."}]},
|
||||
{"role": "assistant", "content": [{"type": "text", "value": "The result of 6*8 is 48."}]},
|
||||
]
|
||||
|
||||
V1_TOOLS = [
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "multiply",
|
||||
"description": "A function that multiplies two numbers",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"a": {"type": "number", "description": "The first number to multiply"},
|
||||
"b": {"type": "number", "description": "The second number to multiply"},
|
||||
},
|
||||
"required": ["a", "b"],
|
||||
},
|
||||
},
|
||||
}
|
||||
]
|
||||
|
||||
|
||||
def test_chatml_rendering():
|
||||
tokenizer: Processor = AutoTokenizer.from_pretrained("llamafactory/tiny-random-qwen3")
|
||||
@@ -60,6 +107,87 @@ def test_chatml_parse():
|
||||
assert parsed_message == V1_MESSAGES[-1]
|
||||
|
||||
|
||||
@pytest.mark.parametrize("num_samples", [16])
|
||||
def test_chatml_rendering_remote(num_samples: int):
|
||||
tokenizer: Processor = AutoTokenizer.from_pretrained("llamafactory/tiny-random-qwen3")
|
||||
renderer = Renderer(template="chatml", processor=tokenizer)
|
||||
data_args = DataArguments(dataset="llamafactory/v1-sft-demo")
|
||||
data_engine = DataEngine(data_args)
|
||||
for index in range(num_samples):
|
||||
v1_inputs = renderer.render_messages(data_engine[index]["messages"], is_generate=True)
|
||||
prefix = tokenizer.encode("<|im_start|>user\n", add_special_tokens=False)
|
||||
print(tokenizer.decode(v1_inputs["input_ids"][: len(prefix)]))
|
||||
assert v1_inputs["input_ids"][: len(prefix)] == prefix
|
||||
|
||||
|
||||
def test_qwen3_nothink_rendering():
|
||||
tokenizer: Processor = AutoTokenizer.from_pretrained("Qwen/Qwen3-4B-Instruct-2507")
|
||||
renderer = Renderer(template="qwen3_nothink", processor=tokenizer)
|
||||
|
||||
hf_inputs = tokenizer.apply_chat_template(HF_MESSAGES_WITH_TOOLS[:-1], tools=V1_TOOLS, add_generation_prompt=True)
|
||||
v1_inputs = renderer.render_messages(V1_MESSAGES_WITH_TOOLS[:-1], tools=json.dumps(V1_TOOLS), is_generate=True)
|
||||
assert v1_inputs["input_ids"] == hf_inputs
|
||||
assert v1_inputs["attention_mask"] == [1] * len(hf_inputs)
|
||||
assert v1_inputs["labels"] == [-100] * len(hf_inputs)
|
||||
assert v1_inputs["loss_weights"] == [0.0] * len(hf_inputs)
|
||||
|
||||
hf_inputs_part = tokenizer.apply_chat_template(
|
||||
HF_MESSAGES_WITH_TOOLS[:-1], tools=V1_TOOLS, add_generation_prompt=False
|
||||
)
|
||||
hf_inputs_full = tokenizer.apply_chat_template(HF_MESSAGES_WITH_TOOLS, tools=V1_TOOLS, add_generation_prompt=False)
|
||||
v1_inputs_full = renderer.render_messages(V1_MESSAGES_WITH_TOOLS, tools=json.dumps(V1_TOOLS), is_generate=False)
|
||||
assert v1_inputs_full["input_ids"] == hf_inputs_full
|
||||
assert v1_inputs_full["attention_mask"] == [1] * len(hf_inputs_full)
|
||||
assert v1_inputs_full["labels"] == [-100] * len(hf_inputs_part) + hf_inputs_full[len(hf_inputs_part) :]
|
||||
assert v1_inputs_full["loss_weights"] == [0.0] * len(hf_inputs_part) + [1.0] * (
|
||||
len(hf_inputs_full) - len(hf_inputs_part)
|
||||
)
|
||||
|
||||
|
||||
def test_qwen3_nothink_parse():
|
||||
tokenizer: Processor = AutoTokenizer.from_pretrained("Qwen/Qwen3-4B-Instruct-2507")
|
||||
renderer = Renderer(template="qwen3_nothink", processor=tokenizer)
|
||||
generated_text = (
|
||||
"<thinking>I need to use the multiply function to calculate 6*8.</thinking>"
|
||||
"Let me call the multiply function."
|
||||
'<tool_call>{"name": "multiply", "arguments": {"a": 6, "b": 8}}</tool_call>'
|
||||
)
|
||||
parsed_message = renderer.parse_message(generated_text)
|
||||
assert parsed_message == {
|
||||
"role": "assistant",
|
||||
"content": [
|
||||
{"type": "reasoning", "value": "I need to use the multiply function to calculate 6*8."},
|
||||
{"type": "text", "value": "Let me call the multiply function."},
|
||||
{"type": "tool_call", "value": json.dumps({"name": "multiply", "arguments": {"a": 6, "b": 8}})},
|
||||
],
|
||||
}
|
||||
|
||||
|
||||
@pytest.mark.parametrize("num_samples", [8])
|
||||
def test_qwen3_nothink_rendering_remote(num_samples: int):
|
||||
tokenizer: Processor = AutoTokenizer.from_pretrained("Qwen/Qwen3-4B-Instruct-2507")
|
||||
renderer = Renderer(template="qwen3_nothink", processor=tokenizer)
|
||||
data_args = DataArguments(dataset="llamafactory/reason-tool-use-demo-1500")
|
||||
data_engine = DataEngine(data_args)
|
||||
for index in range(num_samples):
|
||||
v1_inputs = renderer.render_messages(data_engine[index]["messages"], tools=data_engine[index]["tools"])
|
||||
prefix_text = (
|
||||
"<|im_start|>system\nYou are a methodical and expert assistant. "
|
||||
"Your primary goal is to solve user requests by leveraging a set of available tools. "
|
||||
"You must reason for the best course of action in a structured manner before responding.\n\n"
|
||||
"# Tools\n\nYou may call one or more functions to assist with the user query.\n\n"
|
||||
"You are provided with function signatures within <tools></tools> XML tags:\n<tools>\n"
|
||||
'{"type": "function", "function": {"name":'
|
||||
)
|
||||
prefix = tokenizer.encode(prefix_text, add_special_tokens=False)
|
||||
print(tokenizer.decode(v1_inputs["input_ids"][: len(prefix)]))
|
||||
assert v1_inputs["input_ids"][: len(prefix)] == prefix
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_chatml_rendering()
|
||||
test_chatml_parse()
|
||||
test_chatml_rendering_remote(16)
|
||||
test_qwen3_nothink_rendering()
|
||||
test_qwen3_nothink_parse()
|
||||
test_qwen3_nothink_rendering_remote(16)
|
||||
|
||||
Reference in New Issue
Block a user