mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-22 22:02:51 +08:00
parent
82f26bc959
commit
d1e6e02461
@ -181,9 +181,7 @@ def get_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS:
|
|||||||
and finetuning_args.finetuning_type == "lora"
|
and finetuning_args.finetuning_type == "lora"
|
||||||
):
|
):
|
||||||
logger.warning("`ddp_find_unused_parameters` needs to be set as False for LoRA in DDP training.")
|
logger.warning("`ddp_find_unused_parameters` needs to be set as False for LoRA in DDP training.")
|
||||||
training_args_dict = training_args.to_dict()
|
training_args.ddp_find_unused_parameters = False
|
||||||
training_args_dict.update(dict(ddp_find_unused_parameters=False))
|
|
||||||
training_args = Seq2SeqTrainingArguments(**training_args_dict)
|
|
||||||
|
|
||||||
if finetuning_args.stage in ["rm", "ppo"] and finetuning_args.finetuning_type in ["full", "freeze"]:
|
if finetuning_args.stage in ["rm", "ppo"] and finetuning_args.finetuning_type in ["full", "freeze"]:
|
||||||
can_resume_from_checkpoint = False
|
can_resume_from_checkpoint = False
|
||||||
@ -205,9 +203,7 @@ def get_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS:
|
|||||||
raise ValueError("Output directory already exists and is not empty. Please set `overwrite_output_dir`.")
|
raise ValueError("Output directory already exists and is not empty. Please set `overwrite_output_dir`.")
|
||||||
|
|
||||||
if last_checkpoint is not None:
|
if last_checkpoint is not None:
|
||||||
training_args_dict = training_args.to_dict()
|
training_args.resume_from_checkpoint = last_checkpoint
|
||||||
training_args_dict.update(dict(resume_from_checkpoint=last_checkpoint))
|
|
||||||
training_args = Seq2SeqTrainingArguments(**training_args_dict)
|
|
||||||
logger.info(
|
logger.info(
|
||||||
"Resuming training from {}. Change `output_dir` or use `overwrite_output_dir` to avoid.".format(
|
"Resuming training from {}. Change `output_dir` or use `overwrite_output_dir` to avoid.".format(
|
||||||
training_args.resume_from_checkpoint
|
training_args.resume_from_checkpoint
|
||||||
@ -233,7 +229,7 @@ def get_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS:
|
|||||||
|
|
||||||
# Log on each process the small summary:
|
# Log on each process the small summary:
|
||||||
logger.info(
|
logger.info(
|
||||||
"Process rank: {}, device: {}, n_gpu: {}\n distributed training: {}, compute dtype: {}".format(
|
"Process rank: {}, device: {}, n_gpu: {}, distributed training: {}, compute dtype: {}".format(
|
||||||
training_args.local_rank,
|
training_args.local_rank,
|
||||||
training_args.device,
|
training_args.device,
|
||||||
training_args.n_gpu,
|
training_args.n_gpu,
|
||||||
|
@ -1,5 +1,11 @@
|
|||||||
from .loader import load_model_and_tokenizer
|
from .loader import load_model, load_model_and_tokenizer, load_tokenizer
|
||||||
from .utils import dispatch_model, load_valuehead_params
|
from .utils import dispatch_model, load_valuehead_params
|
||||||
|
|
||||||
|
|
||||||
__all__ = ["load_model_and_tokenizer", "dispatch_model", "load_valuehead_params"]
|
__all__ = [
|
||||||
|
"load_model",
|
||||||
|
"load_model_and_tokenizer",
|
||||||
|
"load_tokenizer",
|
||||||
|
"dispatch_model",
|
||||||
|
"load_valuehead_params",
|
||||||
|
]
|
||||||
|
@ -1,4 +1,4 @@
|
|||||||
from typing import TYPE_CHECKING, Optional, Tuple
|
from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple
|
||||||
|
|
||||||
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
|
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
|
||||||
from trl import AutoModelForCausalLMWithValueHead
|
from trl import AutoModelForCausalLMWithValueHead
|
||||||
@ -19,38 +19,48 @@ if TYPE_CHECKING:
|
|||||||
logger = get_logger(__name__)
|
logger = get_logger(__name__)
|
||||||
|
|
||||||
|
|
||||||
def load_model_and_tokenizer(
|
def _get_init_kwargs(model_args: "ModelArguments") -> Dict[str, Any]:
|
||||||
model_args: "ModelArguments",
|
return {
|
||||||
finetuning_args: "FinetuningArguments",
|
|
||||||
is_trainable: Optional[bool] = False,
|
|
||||||
add_valuehead: Optional[bool] = False,
|
|
||||||
) -> Tuple["PreTrainedModel", "PreTrainedTokenizer"]:
|
|
||||||
r"""
|
|
||||||
Loads pretrained model and tokenizer.
|
|
||||||
|
|
||||||
Support both training and inference.
|
|
||||||
"""
|
|
||||||
|
|
||||||
try_download_model_from_ms(model_args)
|
|
||||||
|
|
||||||
config_kwargs = {
|
|
||||||
"trust_remote_code": True,
|
"trust_remote_code": True,
|
||||||
"cache_dir": model_args.cache_dir,
|
"cache_dir": model_args.cache_dir,
|
||||||
"revision": model_args.model_revision,
|
"revision": model_args.model_revision,
|
||||||
"token": model_args.hf_hub_token,
|
"token": model_args.hf_hub_token,
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
def load_tokenizer(model_args: "ModelArguments") -> "PreTrainedTokenizer":
|
||||||
|
r"""
|
||||||
|
Loads pretrained tokenizer. Must before load_model.
|
||||||
|
|
||||||
|
Note: including inplace operation of model_args.
|
||||||
|
"""
|
||||||
|
try_download_model_from_ms(model_args)
|
||||||
|
init_kwargs = _get_init_kwargs(model_args)
|
||||||
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained(
|
tokenizer = AutoTokenizer.from_pretrained(
|
||||||
model_args.model_name_or_path,
|
model_args.model_name_or_path,
|
||||||
use_fast=model_args.use_fast_tokenizer,
|
use_fast=model_args.use_fast_tokenizer,
|
||||||
split_special_tokens=model_args.split_special_tokens,
|
split_special_tokens=model_args.split_special_tokens,
|
||||||
padding_side="right",
|
padding_side="right",
|
||||||
**config_kwargs,
|
**init_kwargs,
|
||||||
)
|
)
|
||||||
patch_tokenizer(tokenizer)
|
patch_tokenizer(tokenizer)
|
||||||
|
return tokenizer
|
||||||
|
|
||||||
config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
|
|
||||||
patch_config(config, tokenizer, model_args, config_kwargs, is_trainable)
|
def load_model(
|
||||||
|
tokenizer: "PreTrainedTokenizer",
|
||||||
|
model_args: "ModelArguments",
|
||||||
|
finetuning_args: "FinetuningArguments",
|
||||||
|
is_trainable: Optional[bool] = False,
|
||||||
|
add_valuehead: Optional[bool] = False,
|
||||||
|
) -> "PreTrainedModel":
|
||||||
|
r"""
|
||||||
|
Loads pretrained model. Must after load_tokenizer.
|
||||||
|
"""
|
||||||
|
init_kwargs = _get_init_kwargs(model_args)
|
||||||
|
config = AutoConfig.from_pretrained(model_args.model_name_or_path, **init_kwargs)
|
||||||
|
patch_config(config, tokenizer, model_args, init_kwargs, is_trainable)
|
||||||
|
|
||||||
model = None
|
model = None
|
||||||
if is_trainable and model_args.use_unsloth:
|
if is_trainable and model_args.use_unsloth:
|
||||||
@ -76,7 +86,7 @@ def load_model_and_tokenizer(
|
|||||||
logger.warning("Unsloth does not support loading adapters.")
|
logger.warning("Unsloth does not support loading adapters.")
|
||||||
|
|
||||||
if model is None:
|
if model is None:
|
||||||
model = AutoModelForCausalLM.from_pretrained(model_args.model_name_or_path, config=config, **config_kwargs)
|
model = AutoModelForCausalLM.from_pretrained(model_args.model_name_or_path, config=config, **init_kwargs)
|
||||||
|
|
||||||
patch_model(model, tokenizer, model_args, is_trainable)
|
patch_model(model, tokenizer, model_args, is_trainable)
|
||||||
register_autoclass(config, model, tokenizer)
|
register_autoclass(config, model, tokenizer)
|
||||||
@ -105,14 +115,13 @@ def load_model_and_tokenizer(
|
|||||||
model.train()
|
model.train()
|
||||||
|
|
||||||
trainable_params, all_param = count_parameters(model)
|
trainable_params, all_param = count_parameters(model)
|
||||||
logger.info(
|
if is_trainable:
|
||||||
"trainable params: {:d} || all params: {:d} || trainable%: {:.4f}".format(
|
param_stats = "trainable params: {:d} || all params: {:d} || trainable%: {:.4f}".format(
|
||||||
trainable_params, all_param, 100 * trainable_params / all_param
|
trainable_params, all_param, 100 * trainable_params / all_param
|
||||||
)
|
)
|
||||||
)
|
else:
|
||||||
|
param_stats = "all params: {:d}".format(all_param)
|
||||||
if not is_trainable:
|
logger.info(param_stats)
|
||||||
logger.info("This IS expected that the trainable params is 0 if you are using model for inference only.")
|
|
||||||
|
|
||||||
if model_args.print_param_status:
|
if model_args.print_param_status:
|
||||||
for name, param in model.named_parameters():
|
for name, param in model.named_parameters():
|
||||||
@ -122,4 +131,18 @@ def load_model_and_tokenizer(
|
|||||||
)
|
)
|
||||||
)
|
)
|
||||||
|
|
||||||
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
def load_model_and_tokenizer(
|
||||||
|
model_args: "ModelArguments",
|
||||||
|
finetuning_args: "FinetuningArguments",
|
||||||
|
is_trainable: Optional[bool] = False,
|
||||||
|
add_valuehead: Optional[bool] = False,
|
||||||
|
) -> Tuple["PreTrainedModel", "PreTrainedTokenizer"]:
|
||||||
|
r"""
|
||||||
|
Loads pretrained model and tokenizer.
|
||||||
|
"""
|
||||||
|
tokenizer = load_tokenizer(model_args)
|
||||||
|
model = load_model(tokenizer, model_args, finetuning_args, is_trainable, add_valuehead)
|
||||||
return model, tokenizer
|
return model, tokenizer
|
||||||
|
@ -102,16 +102,16 @@ def _get_quantization_dataset(tokenizer: "PreTrainedTokenizer", model_args: "Mod
|
|||||||
return samples
|
return samples
|
||||||
|
|
||||||
|
|
||||||
def _configure_attn_implementation(model_args: "ModelArguments", config_kwargs: Dict[str, Any]) -> None:
|
def _configure_attn_implementation(model_args: "ModelArguments", init_kwargs: Dict[str, Any]) -> None:
|
||||||
if model_args.flash_attn:
|
if model_args.flash_attn:
|
||||||
if is_flash_attn2_available():
|
if is_flash_attn2_available():
|
||||||
config_kwargs["attn_implementation"] = "flash_attention_2"
|
|
||||||
logger.info("Using FlashAttention-2 for faster training and inference.")
|
logger.info("Using FlashAttention-2 for faster training and inference.")
|
||||||
|
init_kwargs["attn_implementation"] = "flash_attention_2"
|
||||||
else:
|
else:
|
||||||
logger.warning("FlashAttention2 is not installed.")
|
logger.warning("FlashAttention2 is not installed.")
|
||||||
config_kwargs["attn_implementation"] = None
|
init_kwargs["attn_implementation"] = None
|
||||||
else:
|
else:
|
||||||
config_kwargs["attn_implementation"] = "eager"
|
init_kwargs["attn_implementation"] = "eager"
|
||||||
|
|
||||||
|
|
||||||
def _configure_rope(config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool) -> None:
|
def _configure_rope(config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool) -> None:
|
||||||
@ -154,7 +154,7 @@ def _configure_quantization(
|
|||||||
config: "PretrainedConfig",
|
config: "PretrainedConfig",
|
||||||
tokenizer: "PreTrainedTokenizer",
|
tokenizer: "PreTrainedTokenizer",
|
||||||
model_args: "ModelArguments",
|
model_args: "ModelArguments",
|
||||||
config_kwargs: Dict[str, Any],
|
init_kwargs: Dict[str, Any],
|
||||||
) -> None:
|
) -> None:
|
||||||
r"""
|
r"""
|
||||||
Priority: PTQ-quantized (training) > AutoGPTQ (export) > Bitsandbytes (training)
|
Priority: PTQ-quantized (training) > AutoGPTQ (export) > Bitsandbytes (training)
|
||||||
@ -187,13 +187,13 @@ def _configure_quantization(
|
|||||||
if getattr(config, "model_type", None) == "chatglm":
|
if getattr(config, "model_type", None) == "chatglm":
|
||||||
raise ValueError("ChatGLM model is not supported.")
|
raise ValueError("ChatGLM model is not supported.")
|
||||||
|
|
||||||
config_kwargs["quantization_config"] = GPTQConfig(
|
init_kwargs["quantization_config"] = GPTQConfig(
|
||||||
bits=model_args.export_quantization_bit,
|
bits=model_args.export_quantization_bit,
|
||||||
tokenizer=tokenizer,
|
tokenizer=tokenizer,
|
||||||
dataset=_get_quantization_dataset(tokenizer, model_args),
|
dataset=_get_quantization_dataset(tokenizer, model_args),
|
||||||
)
|
)
|
||||||
config_kwargs["device_map"] = "auto"
|
init_kwargs["device_map"] = "auto"
|
||||||
config_kwargs["max_memory"] = get_max_memory()
|
init_kwargs["max_memory"] = get_max_memory()
|
||||||
logger.info("Quantizing model to {} bit.".format(model_args.export_quantization_bit))
|
logger.info("Quantizing model to {} bit.".format(model_args.export_quantization_bit))
|
||||||
|
|
||||||
elif model_args.quantization_bit is not None: # bnb
|
elif model_args.quantization_bit is not None: # bnb
|
||||||
@ -202,11 +202,11 @@ def _configure_quantization(
|
|||||||
|
|
||||||
if model_args.quantization_bit == 8:
|
if model_args.quantization_bit == 8:
|
||||||
require_version("bitsandbytes>=0.37.0", "To fix: pip install bitsandbytes>=0.37.0")
|
require_version("bitsandbytes>=0.37.0", "To fix: pip install bitsandbytes>=0.37.0")
|
||||||
config_kwargs["quantization_config"] = BitsAndBytesConfig(load_in_8bit=True)
|
init_kwargs["quantization_config"] = BitsAndBytesConfig(load_in_8bit=True)
|
||||||
|
|
||||||
elif model_args.quantization_bit == 4:
|
elif model_args.quantization_bit == 4:
|
||||||
require_version("bitsandbytes>=0.39.0", "To fix: pip install bitsandbytes>=0.39.0")
|
require_version("bitsandbytes>=0.39.0", "To fix: pip install bitsandbytes>=0.39.0")
|
||||||
config_kwargs["quantization_config"] = BitsAndBytesConfig(
|
init_kwargs["quantization_config"] = BitsAndBytesConfig(
|
||||||
load_in_4bit=True,
|
load_in_4bit=True,
|
||||||
bnb_4bit_compute_dtype=model_args.compute_dtype,
|
bnb_4bit_compute_dtype=model_args.compute_dtype,
|
||||||
bnb_4bit_use_double_quant=model_args.double_quantization,
|
bnb_4bit_use_double_quant=model_args.double_quantization,
|
||||||
@ -262,7 +262,7 @@ def patch_config(
|
|||||||
config: "PretrainedConfig",
|
config: "PretrainedConfig",
|
||||||
tokenizer: "PreTrainedTokenizer",
|
tokenizer: "PreTrainedTokenizer",
|
||||||
model_args: "ModelArguments",
|
model_args: "ModelArguments",
|
||||||
config_kwargs: Dict[str, Any],
|
init_kwargs: Dict[str, Any],
|
||||||
is_trainable: bool,
|
is_trainable: bool,
|
||||||
) -> None:
|
) -> None:
|
||||||
if model_args.compute_dtype is None: # priority: bf16 > fp16 > fp32
|
if model_args.compute_dtype is None: # priority: bf16 > fp16 > fp32
|
||||||
@ -272,7 +272,7 @@ def patch_config(
|
|||||||
for dtype_name, dtype in [("fp16", torch.float16), ("bf16", torch.bfloat16), ("fp32", torch.float32)]:
|
for dtype_name, dtype in [("fp16", torch.float16), ("bf16", torch.bfloat16), ("fp32", torch.float32)]:
|
||||||
setattr(config, dtype_name, model_args.compute_dtype == dtype)
|
setattr(config, dtype_name, model_args.compute_dtype == dtype)
|
||||||
|
|
||||||
_configure_attn_implementation(model_args, config_kwargs)
|
_configure_attn_implementation(model_args, init_kwargs)
|
||||||
|
|
||||||
if model_args.rope_scaling is not None:
|
if model_args.rope_scaling is not None:
|
||||||
_configure_rope(config, model_args, is_trainable)
|
_configure_rope(config, model_args, is_trainable)
|
||||||
@ -280,12 +280,12 @@ def patch_config(
|
|||||||
if is_trainable and model_args.shift_attn:
|
if is_trainable and model_args.shift_attn:
|
||||||
_configure_longlora(config)
|
_configure_longlora(config)
|
||||||
|
|
||||||
_configure_quantization(config, tokenizer, model_args, config_kwargs)
|
_configure_quantization(config, tokenizer, model_args, init_kwargs)
|
||||||
|
|
||||||
config_kwargs["torch_dtype"] = model_args.compute_dtype
|
init_kwargs["torch_dtype"] = model_args.compute_dtype
|
||||||
if not is_deepspeed_zero3_enabled():
|
if not is_deepspeed_zero3_enabled():
|
||||||
config_kwargs["device_map"] = {"": get_current_device()}
|
init_kwargs["device_map"] = {"": get_current_device()}
|
||||||
config_kwargs["low_cpu_mem_usage"] = True
|
init_kwargs["low_cpu_mem_usage"] = True
|
||||||
|
|
||||||
|
|
||||||
def patch_model(
|
def patch_model(
|
||||||
|
@ -2,20 +2,18 @@
|
|||||||
|
|
||||||
from typing import TYPE_CHECKING, List, Optional
|
from typing import TYPE_CHECKING, List, Optional
|
||||||
|
|
||||||
from transformers import Seq2SeqTrainingArguments
|
|
||||||
|
|
||||||
from ...data import get_dataset, split_dataset
|
from ...data import get_dataset, split_dataset
|
||||||
from ...extras.constants import IGNORE_INDEX
|
from ...extras.constants import IGNORE_INDEX
|
||||||
from ...extras.ploting import plot_loss
|
from ...extras.ploting import plot_loss
|
||||||
from ...hparams import ModelArguments
|
from ...hparams import ModelArguments
|
||||||
from ...model import load_model_and_tokenizer
|
from ...model import load_model, load_tokenizer
|
||||||
from ...train.dpo.collator import DPODataCollatorWithPadding
|
from ...train.dpo.collator import DPODataCollatorWithPadding
|
||||||
from ...train.dpo.trainer import CustomDPOTrainer
|
from ...train.dpo.trainer import CustomDPOTrainer
|
||||||
from ...train.utils import create_modelcard_and_push, create_ref_model
|
from ...train.utils import create_modelcard_and_push, create_ref_model
|
||||||
|
|
||||||
|
|
||||||
if TYPE_CHECKING:
|
if TYPE_CHECKING:
|
||||||
from transformers import TrainerCallback
|
from transformers import Seq2SeqTrainingArguments, TrainerCallback
|
||||||
|
|
||||||
from ...hparams import DataArguments, FinetuningArguments
|
from ...hparams import DataArguments, FinetuningArguments
|
||||||
|
|
||||||
@ -27,8 +25,9 @@ def run_dpo(
|
|||||||
finetuning_args: "FinetuningArguments",
|
finetuning_args: "FinetuningArguments",
|
||||||
callbacks: Optional[List["TrainerCallback"]] = None,
|
callbacks: Optional[List["TrainerCallback"]] = None,
|
||||||
):
|
):
|
||||||
model, tokenizer = load_model_and_tokenizer(model_args, finetuning_args, training_args.do_train)
|
tokenizer = load_tokenizer(model_args)
|
||||||
dataset = get_dataset(tokenizer, model_args, data_args, training_args, stage="rm")
|
dataset = get_dataset(tokenizer, model_args, data_args, training_args, stage="rm")
|
||||||
|
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train)
|
||||||
data_collator = DPODataCollatorWithPadding(
|
data_collator = DPODataCollatorWithPadding(
|
||||||
tokenizer=tokenizer,
|
tokenizer=tokenizer,
|
||||||
pad_to_multiple_of=8,
|
pad_to_multiple_of=8,
|
||||||
@ -42,9 +41,7 @@ def run_dpo(
|
|||||||
ref_model = create_ref_model(model_args, finetuning_args)
|
ref_model = create_ref_model(model_args, finetuning_args)
|
||||||
|
|
||||||
# Update arguments
|
# Update arguments
|
||||||
training_args_dict = training_args.to_dict()
|
training_args.remove_unused_columns = False # important for pairwise dataset
|
||||||
training_args_dict.update(dict(remove_unused_columns=False)) # important for pairwise dataset
|
|
||||||
training_args = Seq2SeqTrainingArguments(**training_args_dict)
|
|
||||||
|
|
||||||
# Initialize our Trainer
|
# Initialize our Trainer
|
||||||
trainer = CustomDPOTrainer(
|
trainer = CustomDPOTrainer(
|
||||||
|
@ -12,7 +12,7 @@ from ...data import get_dataset
|
|||||||
from ...extras.callbacks import FixValueHeadModelCallback
|
from ...extras.callbacks import FixValueHeadModelCallback
|
||||||
from ...extras.misc import fix_valuehead_checkpoint
|
from ...extras.misc import fix_valuehead_checkpoint
|
||||||
from ...extras.ploting import plot_loss
|
from ...extras.ploting import plot_loss
|
||||||
from ...model import load_model_and_tokenizer
|
from ...model import load_model, load_tokenizer
|
||||||
from ...train.ppo.trainer import CustomPPOTrainer
|
from ...train.ppo.trainer import CustomPPOTrainer
|
||||||
from ...train.utils import create_ref_model, create_reward_model
|
from ...train.utils import create_ref_model, create_reward_model
|
||||||
|
|
||||||
@ -31,10 +31,9 @@ def run_ppo(
|
|||||||
generating_args: "GeneratingArguments",
|
generating_args: "GeneratingArguments",
|
||||||
callbacks: Optional[List["TrainerCallback"]] = None,
|
callbacks: Optional[List["TrainerCallback"]] = None,
|
||||||
):
|
):
|
||||||
model, tokenizer = load_model_and_tokenizer(
|
tokenizer = load_tokenizer(model_args)
|
||||||
model_args, finetuning_args, training_args.do_train, add_valuehead=True
|
|
||||||
)
|
|
||||||
dataset = get_dataset(tokenizer, model_args, data_args, training_args, stage="ppo")
|
dataset = get_dataset(tokenizer, model_args, data_args, training_args, stage="ppo")
|
||||||
|
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train, add_valuehead=True)
|
||||||
|
|
||||||
tokenizer.padding_side = "left" # use left-padding in generation while using right-padding in training
|
tokenizer.padding_side = "left" # use left-padding in generation while using right-padding in training
|
||||||
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
||||||
|
@ -7,7 +7,7 @@ from transformers import DataCollatorForLanguageModeling, Trainer
|
|||||||
|
|
||||||
from ...data import get_dataset, split_dataset
|
from ...data import get_dataset, split_dataset
|
||||||
from ...extras.ploting import plot_loss
|
from ...extras.ploting import plot_loss
|
||||||
from ...model import load_model_and_tokenizer
|
from ...model import load_model, load_tokenizer
|
||||||
from ...train.utils import create_modelcard_and_push
|
from ...train.utils import create_modelcard_and_push
|
||||||
|
|
||||||
|
|
||||||
@ -24,8 +24,9 @@ def run_pt(
|
|||||||
finetuning_args: "FinetuningArguments",
|
finetuning_args: "FinetuningArguments",
|
||||||
callbacks: Optional[List["TrainerCallback"]] = None,
|
callbacks: Optional[List["TrainerCallback"]] = None,
|
||||||
):
|
):
|
||||||
model, tokenizer = load_model_and_tokenizer(model_args, finetuning_args, training_args.do_train)
|
tokenizer = load_tokenizer(model_args)
|
||||||
dataset = get_dataset(tokenizer, model_args, data_args, training_args, stage="pt")
|
dataset = get_dataset(tokenizer, model_args, data_args, training_args, stage="pt")
|
||||||
|
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train)
|
||||||
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
||||||
|
|
||||||
# Initialize our Trainer
|
# Initialize our Trainer
|
||||||
|
@ -2,13 +2,11 @@
|
|||||||
|
|
||||||
from typing import TYPE_CHECKING, List, Optional
|
from typing import TYPE_CHECKING, List, Optional
|
||||||
|
|
||||||
from transformers import Seq2SeqTrainingArguments
|
|
||||||
|
|
||||||
from ...data import get_dataset, split_dataset
|
from ...data import get_dataset, split_dataset
|
||||||
from ...extras.callbacks import FixValueHeadModelCallback
|
from ...extras.callbacks import FixValueHeadModelCallback
|
||||||
from ...extras.misc import fix_valuehead_checkpoint
|
from ...extras.misc import fix_valuehead_checkpoint
|
||||||
from ...extras.ploting import plot_loss
|
from ...extras.ploting import plot_loss
|
||||||
from ...model import load_model_and_tokenizer
|
from ...model import load_model, load_tokenizer
|
||||||
from ...train.rm.collator import PairwiseDataCollatorWithPadding
|
from ...train.rm.collator import PairwiseDataCollatorWithPadding
|
||||||
from ...train.rm.metric import compute_accuracy
|
from ...train.rm.metric import compute_accuracy
|
||||||
from ...train.rm.trainer import PairwiseTrainer
|
from ...train.rm.trainer import PairwiseTrainer
|
||||||
@ -16,7 +14,7 @@ from ...train.utils import create_modelcard_and_push
|
|||||||
|
|
||||||
|
|
||||||
if TYPE_CHECKING:
|
if TYPE_CHECKING:
|
||||||
from transformers import TrainerCallback
|
from transformers import Seq2SeqTrainingArguments, TrainerCallback
|
||||||
|
|
||||||
from ...hparams import DataArguments, FinetuningArguments, ModelArguments
|
from ...hparams import DataArguments, FinetuningArguments, ModelArguments
|
||||||
|
|
||||||
@ -28,16 +26,13 @@ def run_rm(
|
|||||||
finetuning_args: "FinetuningArguments",
|
finetuning_args: "FinetuningArguments",
|
||||||
callbacks: Optional[List["TrainerCallback"]] = None,
|
callbacks: Optional[List["TrainerCallback"]] = None,
|
||||||
):
|
):
|
||||||
model, tokenizer = load_model_and_tokenizer(
|
tokenizer = load_tokenizer(model_args)
|
||||||
model_args, finetuning_args, training_args.do_train, add_valuehead=True
|
|
||||||
)
|
|
||||||
dataset = get_dataset(tokenizer, model_args, data_args, training_args, stage="rm")
|
dataset = get_dataset(tokenizer, model_args, data_args, training_args, stage="rm")
|
||||||
|
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train, add_valuehead=True)
|
||||||
data_collator = PairwiseDataCollatorWithPadding(tokenizer, pad_to_multiple_of=8)
|
data_collator = PairwiseDataCollatorWithPadding(tokenizer, pad_to_multiple_of=8)
|
||||||
|
|
||||||
# Update arguments
|
# Update arguments
|
||||||
training_args_dict = training_args.to_dict()
|
training_args.remove_unused_columns = False # important for pairwise dataset
|
||||||
training_args_dict.update(dict(remove_unused_columns=False)) # important for pairwise dataset
|
|
||||||
training_args = Seq2SeqTrainingArguments(**training_args_dict)
|
|
||||||
|
|
||||||
# Initialize our Trainer
|
# Initialize our Trainer
|
||||||
trainer = PairwiseTrainer(
|
trainer = PairwiseTrainer(
|
||||||
|
@ -2,20 +2,20 @@
|
|||||||
|
|
||||||
from typing import TYPE_CHECKING, List, Optional
|
from typing import TYPE_CHECKING, List, Optional
|
||||||
|
|
||||||
from transformers import DataCollatorForSeq2Seq, Seq2SeqTrainingArguments
|
from transformers import DataCollatorForSeq2Seq
|
||||||
|
|
||||||
from ...data import get_dataset, split_dataset
|
from ...data import get_dataset, split_dataset
|
||||||
from ...extras.constants import IGNORE_INDEX
|
from ...extras.constants import IGNORE_INDEX
|
||||||
from ...extras.misc import get_logits_processor
|
from ...extras.misc import get_logits_processor
|
||||||
from ...extras.ploting import plot_loss
|
from ...extras.ploting import plot_loss
|
||||||
from ...model import load_model_and_tokenizer
|
from ...model import load_model, load_tokenizer
|
||||||
from ...train.sft.metric import ComputeMetrics
|
from ...train.sft.metric import ComputeMetrics
|
||||||
from ...train.sft.trainer import CustomSeq2SeqTrainer
|
from ...train.sft.trainer import CustomSeq2SeqTrainer
|
||||||
from ...train.utils import create_modelcard_and_push
|
from ...train.utils import create_modelcard_and_push
|
||||||
|
|
||||||
|
|
||||||
if TYPE_CHECKING:
|
if TYPE_CHECKING:
|
||||||
from transformers import TrainerCallback
|
from transformers import Seq2SeqTrainingArguments, TrainerCallback
|
||||||
|
|
||||||
from ...hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments
|
from ...hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments
|
||||||
|
|
||||||
@ -28,8 +28,9 @@ def run_sft(
|
|||||||
generating_args: "GeneratingArguments",
|
generating_args: "GeneratingArguments",
|
||||||
callbacks: Optional[List["TrainerCallback"]] = None,
|
callbacks: Optional[List["TrainerCallback"]] = None,
|
||||||
):
|
):
|
||||||
model, tokenizer = load_model_and_tokenizer(model_args, finetuning_args, training_args.do_train)
|
tokenizer = load_tokenizer(model_args)
|
||||||
dataset = get_dataset(tokenizer, model_args, data_args, training_args, stage="sft")
|
dataset = get_dataset(tokenizer, model_args, data_args, training_args, stage="sft")
|
||||||
|
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train)
|
||||||
|
|
||||||
if training_args.predict_with_generate:
|
if training_args.predict_with_generate:
|
||||||
tokenizer.padding_side = "left" # use left-padding in generation
|
tokenizer.padding_side = "left" # use left-padding in generation
|
||||||
@ -44,14 +45,8 @@ def run_sft(
|
|||||||
)
|
)
|
||||||
|
|
||||||
# Override the decoding parameters of Seq2SeqTrainer
|
# Override the decoding parameters of Seq2SeqTrainer
|
||||||
training_args_dict = training_args.to_dict()
|
training_args.generation_max_length = training_args.generation_max_length or data_args.cutoff_len
|
||||||
training_args_dict.update(
|
training_args.generation_num_beams = data_args.eval_num_beams or training_args.generation_num_beams
|
||||||
dict(
|
|
||||||
generation_max_length=training_args.generation_max_length or data_args.cutoff_len,
|
|
||||||
generation_num_beams=data_args.eval_num_beams or training_args.generation_num_beams,
|
|
||||||
)
|
|
||||||
)
|
|
||||||
training_args = Seq2SeqTrainingArguments(**training_args_dict)
|
|
||||||
|
|
||||||
# Initialize our Trainer
|
# Initialize our Trainer
|
||||||
trainer = CustomSeq2SeqTrainer(
|
trainer = CustomSeq2SeqTrainer(
|
||||||
|
Loading…
x
Reference in New Issue
Block a user