mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-12-15 03:10:35 +08:00
@@ -1,5 +1,11 @@
|
||||
from .loader import load_model_and_tokenizer
|
||||
from .loader import load_model, load_model_and_tokenizer, load_tokenizer
|
||||
from .utils import dispatch_model, load_valuehead_params
|
||||
|
||||
|
||||
__all__ = ["load_model_and_tokenizer", "dispatch_model", "load_valuehead_params"]
|
||||
__all__ = [
|
||||
"load_model",
|
||||
"load_model_and_tokenizer",
|
||||
"load_tokenizer",
|
||||
"dispatch_model",
|
||||
"load_valuehead_params",
|
||||
]
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
from typing import TYPE_CHECKING, Optional, Tuple
|
||||
from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple
|
||||
|
||||
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
|
||||
from trl import AutoModelForCausalLMWithValueHead
|
||||
@@ -19,38 +19,48 @@ if TYPE_CHECKING:
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
def load_model_and_tokenizer(
|
||||
model_args: "ModelArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
is_trainable: Optional[bool] = False,
|
||||
add_valuehead: Optional[bool] = False,
|
||||
) -> Tuple["PreTrainedModel", "PreTrainedTokenizer"]:
|
||||
r"""
|
||||
Loads pretrained model and tokenizer.
|
||||
|
||||
Support both training and inference.
|
||||
"""
|
||||
|
||||
try_download_model_from_ms(model_args)
|
||||
|
||||
config_kwargs = {
|
||||
def _get_init_kwargs(model_args: "ModelArguments") -> Dict[str, Any]:
|
||||
return {
|
||||
"trust_remote_code": True,
|
||||
"cache_dir": model_args.cache_dir,
|
||||
"revision": model_args.model_revision,
|
||||
"token": model_args.hf_hub_token,
|
||||
}
|
||||
|
||||
|
||||
def load_tokenizer(model_args: "ModelArguments") -> "PreTrainedTokenizer":
|
||||
r"""
|
||||
Loads pretrained tokenizer. Must before load_model.
|
||||
|
||||
Note: including inplace operation of model_args.
|
||||
"""
|
||||
try_download_model_from_ms(model_args)
|
||||
init_kwargs = _get_init_kwargs(model_args)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_args.model_name_or_path,
|
||||
use_fast=model_args.use_fast_tokenizer,
|
||||
split_special_tokens=model_args.split_special_tokens,
|
||||
padding_side="right",
|
||||
**config_kwargs,
|
||||
**init_kwargs,
|
||||
)
|
||||
patch_tokenizer(tokenizer)
|
||||
return tokenizer
|
||||
|
||||
config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
|
||||
patch_config(config, tokenizer, model_args, config_kwargs, is_trainable)
|
||||
|
||||
def load_model(
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
model_args: "ModelArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
is_trainable: Optional[bool] = False,
|
||||
add_valuehead: Optional[bool] = False,
|
||||
) -> "PreTrainedModel":
|
||||
r"""
|
||||
Loads pretrained model. Must after load_tokenizer.
|
||||
"""
|
||||
init_kwargs = _get_init_kwargs(model_args)
|
||||
config = AutoConfig.from_pretrained(model_args.model_name_or_path, **init_kwargs)
|
||||
patch_config(config, tokenizer, model_args, init_kwargs, is_trainable)
|
||||
|
||||
model = None
|
||||
if is_trainable and model_args.use_unsloth:
|
||||
@@ -76,7 +86,7 @@ def load_model_and_tokenizer(
|
||||
logger.warning("Unsloth does not support loading adapters.")
|
||||
|
||||
if model is None:
|
||||
model = AutoModelForCausalLM.from_pretrained(model_args.model_name_or_path, config=config, **config_kwargs)
|
||||
model = AutoModelForCausalLM.from_pretrained(model_args.model_name_or_path, config=config, **init_kwargs)
|
||||
|
||||
patch_model(model, tokenizer, model_args, is_trainable)
|
||||
register_autoclass(config, model, tokenizer)
|
||||
@@ -105,14 +115,13 @@ def load_model_and_tokenizer(
|
||||
model.train()
|
||||
|
||||
trainable_params, all_param = count_parameters(model)
|
||||
logger.info(
|
||||
"trainable params: {:d} || all params: {:d} || trainable%: {:.4f}".format(
|
||||
if is_trainable:
|
||||
param_stats = "trainable params: {:d} || all params: {:d} || trainable%: {:.4f}".format(
|
||||
trainable_params, all_param, 100 * trainable_params / all_param
|
||||
)
|
||||
)
|
||||
|
||||
if not is_trainable:
|
||||
logger.info("This IS expected that the trainable params is 0 if you are using model for inference only.")
|
||||
else:
|
||||
param_stats = "all params: {:d}".format(all_param)
|
||||
logger.info(param_stats)
|
||||
|
||||
if model_args.print_param_status:
|
||||
for name, param in model.named_parameters():
|
||||
@@ -122,4 +131,18 @@ def load_model_and_tokenizer(
|
||||
)
|
||||
)
|
||||
|
||||
return model
|
||||
|
||||
|
||||
def load_model_and_tokenizer(
|
||||
model_args: "ModelArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
is_trainable: Optional[bool] = False,
|
||||
add_valuehead: Optional[bool] = False,
|
||||
) -> Tuple["PreTrainedModel", "PreTrainedTokenizer"]:
|
||||
r"""
|
||||
Loads pretrained model and tokenizer.
|
||||
"""
|
||||
tokenizer = load_tokenizer(model_args)
|
||||
model = load_model(tokenizer, model_args, finetuning_args, is_trainable, add_valuehead)
|
||||
return model, tokenizer
|
||||
|
||||
@@ -102,16 +102,16 @@ def _get_quantization_dataset(tokenizer: "PreTrainedTokenizer", model_args: "Mod
|
||||
return samples
|
||||
|
||||
|
||||
def _configure_attn_implementation(model_args: "ModelArguments", config_kwargs: Dict[str, Any]) -> None:
|
||||
def _configure_attn_implementation(model_args: "ModelArguments", init_kwargs: Dict[str, Any]) -> None:
|
||||
if model_args.flash_attn:
|
||||
if is_flash_attn2_available():
|
||||
config_kwargs["attn_implementation"] = "flash_attention_2"
|
||||
logger.info("Using FlashAttention-2 for faster training and inference.")
|
||||
init_kwargs["attn_implementation"] = "flash_attention_2"
|
||||
else:
|
||||
logger.warning("FlashAttention2 is not installed.")
|
||||
config_kwargs["attn_implementation"] = None
|
||||
init_kwargs["attn_implementation"] = None
|
||||
else:
|
||||
config_kwargs["attn_implementation"] = "eager"
|
||||
init_kwargs["attn_implementation"] = "eager"
|
||||
|
||||
|
||||
def _configure_rope(config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool) -> None:
|
||||
@@ -154,7 +154,7 @@ def _configure_quantization(
|
||||
config: "PretrainedConfig",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
model_args: "ModelArguments",
|
||||
config_kwargs: Dict[str, Any],
|
||||
init_kwargs: Dict[str, Any],
|
||||
) -> None:
|
||||
r"""
|
||||
Priority: PTQ-quantized (training) > AutoGPTQ (export) > Bitsandbytes (training)
|
||||
@@ -187,13 +187,13 @@ def _configure_quantization(
|
||||
if getattr(config, "model_type", None) == "chatglm":
|
||||
raise ValueError("ChatGLM model is not supported.")
|
||||
|
||||
config_kwargs["quantization_config"] = GPTQConfig(
|
||||
init_kwargs["quantization_config"] = GPTQConfig(
|
||||
bits=model_args.export_quantization_bit,
|
||||
tokenizer=tokenizer,
|
||||
dataset=_get_quantization_dataset(tokenizer, model_args),
|
||||
)
|
||||
config_kwargs["device_map"] = "auto"
|
||||
config_kwargs["max_memory"] = get_max_memory()
|
||||
init_kwargs["device_map"] = "auto"
|
||||
init_kwargs["max_memory"] = get_max_memory()
|
||||
logger.info("Quantizing model to {} bit.".format(model_args.export_quantization_bit))
|
||||
|
||||
elif model_args.quantization_bit is not None: # bnb
|
||||
@@ -202,11 +202,11 @@ def _configure_quantization(
|
||||
|
||||
if model_args.quantization_bit == 8:
|
||||
require_version("bitsandbytes>=0.37.0", "To fix: pip install bitsandbytes>=0.37.0")
|
||||
config_kwargs["quantization_config"] = BitsAndBytesConfig(load_in_8bit=True)
|
||||
init_kwargs["quantization_config"] = BitsAndBytesConfig(load_in_8bit=True)
|
||||
|
||||
elif model_args.quantization_bit == 4:
|
||||
require_version("bitsandbytes>=0.39.0", "To fix: pip install bitsandbytes>=0.39.0")
|
||||
config_kwargs["quantization_config"] = BitsAndBytesConfig(
|
||||
init_kwargs["quantization_config"] = BitsAndBytesConfig(
|
||||
load_in_4bit=True,
|
||||
bnb_4bit_compute_dtype=model_args.compute_dtype,
|
||||
bnb_4bit_use_double_quant=model_args.double_quantization,
|
||||
@@ -262,7 +262,7 @@ def patch_config(
|
||||
config: "PretrainedConfig",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
model_args: "ModelArguments",
|
||||
config_kwargs: Dict[str, Any],
|
||||
init_kwargs: Dict[str, Any],
|
||||
is_trainable: bool,
|
||||
) -> None:
|
||||
if model_args.compute_dtype is None: # priority: bf16 > fp16 > fp32
|
||||
@@ -272,7 +272,7 @@ def patch_config(
|
||||
for dtype_name, dtype in [("fp16", torch.float16), ("bf16", torch.bfloat16), ("fp32", torch.float32)]:
|
||||
setattr(config, dtype_name, model_args.compute_dtype == dtype)
|
||||
|
||||
_configure_attn_implementation(model_args, config_kwargs)
|
||||
_configure_attn_implementation(model_args, init_kwargs)
|
||||
|
||||
if model_args.rope_scaling is not None:
|
||||
_configure_rope(config, model_args, is_trainable)
|
||||
@@ -280,12 +280,12 @@ def patch_config(
|
||||
if is_trainable and model_args.shift_attn:
|
||||
_configure_longlora(config)
|
||||
|
||||
_configure_quantization(config, tokenizer, model_args, config_kwargs)
|
||||
_configure_quantization(config, tokenizer, model_args, init_kwargs)
|
||||
|
||||
config_kwargs["torch_dtype"] = model_args.compute_dtype
|
||||
init_kwargs["torch_dtype"] = model_args.compute_dtype
|
||||
if not is_deepspeed_zero3_enabled():
|
||||
config_kwargs["device_map"] = {"": get_current_device()}
|
||||
config_kwargs["low_cpu_mem_usage"] = True
|
||||
init_kwargs["device_map"] = {"": get_current_device()}
|
||||
init_kwargs["low_cpu_mem_usage"] = True
|
||||
|
||||
|
||||
def patch_model(
|
||||
|
||||
Reference in New Issue
Block a user