fix modelscope data hub

Former-commit-id: d5b2c57a356539df9993e4774b856231eca8a6da
This commit is contained in:
hiyouga 2023-12-12 18:33:06 +08:00
parent 0091af79b2
commit cefc0b2f03
6 changed files with 60 additions and 46 deletions

View File

@ -109,7 +109,8 @@
"ms_hub_url": "AI-ModelScope/CodeAlpaca-20k"
},
"alpaca_cot": {
"hf_hub_url": "QingyiSi/Alpaca-CoT"
"hf_hub_url": "QingyiSi/Alpaca-CoT",
"ms_hub_url": "AI-ModelScope/Alpaca-CoT"
},
"openorca": {
"hf_hub_url": "Open-Orca/OpenOrca",
@ -170,23 +171,23 @@
"hf_hub_url": "HuggingFaceH4/ultrachat_200k",
"ms_hub_url": "AI-ModelScope/ultrachat_200k",
"columns": {
"prompt": "messages",
"query": "role",
"response": "content"
"messages": "messages",
"role": "role",
"content": "content"
},
"formatting": "sharegpt"
},
"agent_instruct": {
"hf_hub_url": "THUDM/AgentInstruct",
"ms_hub_url": "ZhipuAI/AgentInstruct",
"formatting": "sharegpt"
},
"lmsys_chat": {
"hf_hub_url": "lmsys/lmsys-chat-1m",
"ms_hub_url": "AI-ModelScope/lmsys-chat-1m",
"columns": {
"prompt": "conversation",
"query": "role",
"response": "content"
"messages": "conversation",
"role": "role",
"content": "content"
},
"formatting": "sharegpt"
},
@ -287,12 +288,14 @@
},
"the_stack": {
"hf_hub_url": "bigcode/the-stack",
"ms_hub_url": "AI-ModelScope/the-stack",
"columns": {
"prompt": "content"
}
},
"starcoder_python": {
"hf_hub_url": "bigcode/starcoderdata",
"ms_hub_url": "AI-ModelScope/starcoderdata",
"columns": {
"prompt": "content"
},

View File

@ -25,7 +25,7 @@ def get_dataset(
logger.info("Loading dataset {}...".format(dataset_attr))
data_path, data_name, data_dir, data_files = None, None, None, None
if dataset_attr.load_from in ("hf_hub", "ms_hub"):
if dataset_attr.load_from in ["hf_hub", "ms_hub"]:
data_path = dataset_attr.dataset_name
data_name = dataset_attr.subset
data_dir = dataset_attr.folder
@ -53,24 +53,29 @@ def get_dataset(
else:
raise NotImplementedError
if int(os.environ.get('USE_MODELSCOPE_HUB', '0')) and dataset_attr.load_from == "ms_hub":
from modelscope import MsDataset
from modelscope.utils.config_ds import MS_DATASETS_CACHE
cache_dir = model_args.cache_dir or MS_DATASETS_CACHE
if dataset_attr.load_from == "ms_hub":
try:
from modelscope import MsDataset # type: ignore
from modelscope.utils.config_ds import MS_DATASETS_CACHE # type: ignore
cache_dir = model_args.cache_dir or MS_DATASETS_CACHE
dataset = MsDataset.load(
dataset_name=data_path,
subset_name=data_name,
split=data_args.split,
data_dir=data_dir,
data_files=data_files,
split=data_args.split,
cache_dir=cache_dir,
token=model_args.ms_hub_token,
use_streaming=(data_args.streaming and (dataset_attr.load_from != "file")),
).to_hf_dataset()
except ImportError:
raise ImportError("Please install modelscope via `pip install modelscope -U`")
else:
dataset = load_dataset(
path=data_path,
name=data_name,
data_dir=data_dir,
data_files=data_files,
split=data_args.split,
cache_dir=model_args.cache_dir,

View File

@ -2,17 +2,19 @@ import os
import json
from typing import List, Literal, Optional
from dataclasses import dataclass, field
from llmtuner.extras.logging import get_logger
logger = get_logger(__name__)
DATA_CONFIG = "dataset_info.json"
def use_modelscope() -> bool:
return bool(int(os.environ.get("USE_MODELSCOPE_HUB", "0")))
@dataclass
class DatasetAttr:
load_from: str
load_from: Literal["hf_hub", "ms_hub", "script", "file"]
dataset_name: Optional[str] = None
dataset_sha1: Optional[str] = None
system_prompt: Optional[str] = None
@ -155,19 +157,25 @@ class DataArguments:
if name not in dataset_info:
raise ValueError("Undefined dataset {} in {}.".format(name, DATA_CONFIG))
if "hf_hub_url" in dataset_info[name] or 'ms_hub_url' in dataset_info[name]:
url_key_name = "hf_hub_url"
if int(os.environ.get('USE_MODELSCOPE_HUB', '0')):
if 'ms_hub_url' in dataset_info[name]:
url_key_name = 'ms_hub_url'
else:
logger.warning('You are using ModelScope Hub, but the specified dataset '
'has no `ms_hub_url` key, so `hf_hub_url` will be used instead.')
has_hf_url = "hf_hub_url" in dataset_info[name]
has_ms_url = "ms_hub_url" in dataset_info[name]
dataset_attr = DatasetAttr(url_key_name[:url_key_name.index('_url')],
dataset_name=dataset_info[name][url_key_name])
if has_hf_url or has_ms_url:
if (use_modelscope() and has_ms_url) or (not has_hf_url):
dataset_attr = DatasetAttr(
"ms_hub",
dataset_name=dataset_info[name]["ms_hub_url"]
)
else:
dataset_attr = DatasetAttr(
"hf_hub",
dataset_name=dataset_info[name]["hf_hub_url"]
)
elif "script_url" in dataset_info[name]:
dataset_attr = DatasetAttr("script", dataset_name=dataset_info[name]["script_url"])
dataset_attr = DatasetAttr(
"script",
dataset_name=dataset_info[name]["script_url"]
)
else:
dataset_attr = DatasetAttr(
"file",

View File

@ -66,8 +66,8 @@ def init_adapter(
if model_args.checkpoint_dir is not None:
is_mergeable = True
if getattr(model, "quantization_method", None) == "gptq":
assert len(model_args.checkpoint_dir) == 1, "GPTQ quantized model only accepts a single checkpoint."
if getattr(model, "quantization_method", None): # merge lora in quantized model is unstable
assert len(model_args.checkpoint_dir) == 1, "Quantized model only accepts a single checkpoint."
is_mergeable = False
if (is_trainable and finetuning_args.resume_lora_training) or (not is_mergeable):

View File

@ -1,4 +1,3 @@
import os
import math
import torch
from types import MethodType
@ -13,7 +12,6 @@ from transformers import (
PreTrainedModel,
PreTrainedTokenizerBase
)
from transformers.models.llama import modeling_llama as LlamaModule
from transformers.utils.versions import require_version
from trl import AutoModelForCausalLMWithValueHead

View File

@ -44,13 +44,13 @@ def _verify_model_args(model_args: "ModelArguments", finetuning_args: "Finetunin
if model_args.quantization_bit is not None and finetuning_args.finetuning_type != "lora":
raise ValueError("Quantization is only compatible with the LoRA method.")
if (
model_args.checkpoint_dir is not None
and len(model_args.checkpoint_dir) != 1
and finetuning_args.finetuning_type != "lora"
):
if model_args.checkpoint_dir is not None and len(model_args.checkpoint_dir) != 1:
if finetuning_args.finetuning_type != "lora":
raise ValueError("Multiple checkpoints are only available for LoRA tuning.")
if model_args.quantization_bit is not None:
raise ValueError("Quantized model only accepts a single checkpoint. Merge them first.")
def parse_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS:
parser = HfArgumentParser(_TRAIN_ARGS)