update data processors

This commit is contained in:
hiyouga
2024-06-07 04:15:40 +08:00
parent 181dbb0d05
commit ccc8b64cc2
6 changed files with 190 additions and 139 deletions

View File

@@ -1,4 +1,4 @@
from typing import TYPE_CHECKING, Any, Dict, List, Optional
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple
from ...extras.constants import IGNORE_INDEX
from ...extras.logging import get_logger
@@ -16,6 +16,55 @@ if TYPE_CHECKING:
logger = get_logger(__name__)
def _encode_feedback_example(
prompt: Sequence[Dict[str, str]],
response: Sequence[Dict[str, str]],
kl_response: Sequence[Dict[str, str]],
system: Optional[str],
tools: Optional[str],
template: "Template",
tokenizer: "PreTrainedTokenizer",
processor: Optional["ProcessorMixin"],
data_args: "DataArguments",
) -> Tuple[List[int], List[int], List[int], List[int], bool]:
if processor is not None and not hasattr(processor, "image_seq_length"): # llava-like models
prompt[0]["content"] = template.image_token + prompt[0]["content"]
if response[0]["content"]: # desired example
kto_tag = True
messages = prompt + [response[0]]
else: # undesired example
kto_tag = False
messages = prompt + [response[1]]
if kl_response[0]["content"]:
kl_messages = prompt + [kl_response[0]]
else:
kl_messages = prompt + [kl_response[1]]
prompt_ids, response_ids = template.encode_oneturn(
tokenizer, messages, system, tools, data_args.cutoff_len, data_args.reserved_label_len
)
_, kl_response_ids = template.encode_oneturn(
tokenizer, kl_messages, system, tools, data_args.cutoff_len, data_args.reserved_label_len
)
if template.efficient_eos:
response_ids += [tokenizer.eos_token_id]
kl_response_ids += [tokenizer.eos_token_id]
if processor is not None and hasattr(processor, "image_seq_length"): # paligemma models
image_token_id = tokenizer.convert_tokens_to_ids(template.image_token)
prompt_ids = [image_token_id] * getattr(processor, "image_seq_length") + prompt_ids
input_ids = prompt_ids + response_ids
labels = [IGNORE_INDEX] * len(prompt_ids) + response_ids
kl_input_ids = prompt_ids + kl_response_ids
kl_labels = [IGNORE_INDEX] * len(prompt_ids) + kl_response_ids
return input_ids, labels, kl_input_ids, kl_labels, kto_tag
def preprocess_feedback_dataset(
examples: Dict[str, List[Any]],
template: "Template",
@@ -45,50 +94,17 @@ def preprocess_feedback_dataset(
logger.warning("Dropped invalid example: {}".format(examples["prompt"][i] + examples["response"][i]))
continue
if processor is not None and not hasattr(processor, "image_seq_length"): # llava-like models
examples["prompt"][i][0]["content"] = template.image_token + examples["prompt"][i][0]["content"]
if examples["response"][i][0]["content"]: # desired example
kto_tag = True
messages = examples["prompt"][i] + [examples["response"][i][0]]
else: # undesired example
kto_tag = False
messages = examples["prompt"][i] + [examples["response"][i][1]]
if kl_response[i][0]["content"]:
kl_messages = examples["prompt"][i] + [kl_response[i][0]]
else:
kl_messages = examples["prompt"][i] + [kl_response[i][1]]
prompt_ids, response_ids = template.encode_oneturn(
tokenizer,
messages,
examples["system"][i],
examples["tools"][i],
data_args.cutoff_len,
data_args.reserved_label_len,
input_ids, labels, kl_input_ids, kl_labels, kto_tag = _encode_feedback_example(
prompt=examples["prompt"][i],
response=examples["response"][i],
kl_response=kl_response[i],
system=examples["system"][i],
tools=examples["tools"][i],
template=template,
tokenizer=tokenizer,
processor=processor,
data_args=data_args,
)
_, kl_response_ids = template.encode_oneturn(
tokenizer,
kl_messages,
examples["system"][i],
examples["tools"][i],
data_args.cutoff_len,
data_args.reserved_label_len,
)
if template.efficient_eos:
response_ids += [tokenizer.eos_token_id]
kl_response_ids += [tokenizer.eos_token_id]
if processor is not None and hasattr(processor, "image_seq_length"): # paligemma models
image_token_id = tokenizer.convert_tokens_to_ids(template.image_token)
prompt_ids = [image_token_id] * getattr(processor, "image_seq_length") + prompt_ids
input_ids = prompt_ids + response_ids
labels = [IGNORE_INDEX] * len(prompt_ids) + response_ids
kl_input_ids = prompt_ids + kl_response_ids
kl_labels = [IGNORE_INDEX] * len(prompt_ids) + kl_response_ids
model_inputs["input_ids"].append(input_ids)
model_inputs["attention_mask"].append([1] * len(input_ids))
model_inputs["labels"].append(labels)