mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-04 12:42:51 +08:00
add galore examples
Former-commit-id: 7230e1177daf4d96a1205565ab9335085cc8f3a7
This commit is contained in:
parent
2c010c72b8
commit
cb2bf680c9
@ -70,9 +70,9 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
|
|||||||
|
|
||||||
## Changelog
|
## Changelog
|
||||||
|
|
||||||
[24/03/07] We supported [GaLore](https://arxiv.org/abs/2403.03507) algorithm. Try `--use_galore` to use the memory-efficient optimizer.
|
[24/03/07] We supported **[GaLore](https://arxiv.org/abs/2403.03507)** algorithm. Try `--use_galore` to use the memory-efficient optimizer.
|
||||||
|
|
||||||
[24/03/07] We integrated [vLLM](https://github.com/vllm-project/vllm) for faster and concurrent inference. Try `--infer_backend vllm` to enjoy **270%** inference speed. (LoRA is not yet supported, merge it first.)
|
[24/03/07] We integrated **[vLLM](https://github.com/vllm-project/vllm)** for faster and concurrent inference. Try `--infer_backend vllm` to enjoy **270%** inference speed. (LoRA is not yet supported, merge it first.)
|
||||||
|
|
||||||
[24/02/28] We supported weight-decomposed LoRA (**[DoRA](https://arxiv.org/abs/2402.09353)**). Try `--use_dora` to activate DoRA training.
|
[24/02/28] We supported weight-decomposed LoRA (**[DoRA](https://arxiv.org/abs/2402.09353)**). Try `--use_dora` to activate DoRA training.
|
||||||
|
|
||||||
|
@ -70,9 +70,9 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/ec36a9dd-37f4-4f72-81bd
|
|||||||
|
|
||||||
## 更新日志
|
## 更新日志
|
||||||
|
|
||||||
[24/03/07] 我们支持了 [GaLore](https://arxiv.org/abs/2403.03507) 算法。请使用 `--use_galore` 参数切换显存高效的优化器。
|
[24/03/07] 我们支持了 **[GaLore](https://arxiv.org/abs/2403.03507)** 算法。请使用 `--use_galore` 参数切换显存高效的优化器。
|
||||||
|
|
||||||
[24/03/07] 我们集成了 [vLLM](https://github.com/vllm-project/vllm) 以实现极速并发推理。请使用 `--infer_backend vllm` 来获得 **270%** 的推理速度。(尚不支持 LoRA,请先合并权重。)
|
[24/03/07] 我们集成了 **[vLLM](https://github.com/vllm-project/vllm)** 以实现极速并发推理。请使用 `--infer_backend vllm` 来获得 **270%** 的推理速度。(尚不支持 LoRA,请先合并权重。)
|
||||||
|
|
||||||
[24/02/28] 我们支持了 **[DoRA](https://arxiv.org/abs/2402.09353)** 微调。请使用 `--use_dora` 参数进行 DoRA 微调。
|
[24/02/28] 我们支持了 **[DoRA](https://arxiv.org/abs/2402.09353)** 微调。请使用 `--use_dora` 参数进行 DoRA 微调。
|
||||||
|
|
||||||
|
33
examples/extras/galore/adamw.sh
Normal file
33
examples/extras/galore/adamw.sh
Normal file
@ -0,0 +1,33 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
|
||||||
|
CUDA_VISIBLE_DEVICES=0 python ../../../src/train_bash.py \
|
||||||
|
--stage sft \
|
||||||
|
--do_train \
|
||||||
|
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
||||||
|
--dataset alpaca_gpt4_en,glaive_toolcall \
|
||||||
|
--dataset_dir ../../../data \
|
||||||
|
--template default \
|
||||||
|
--finetuning_type freeze \
|
||||||
|
--name_module_trainable mlp,self_attn \
|
||||||
|
--num_layer_trainable 8 \
|
||||||
|
--output_dir ../../../saves/LLaMA2-7B/galore/sft \
|
||||||
|
--overwrite_cache \
|
||||||
|
--overwrite_output_dir \
|
||||||
|
--cutoff_len 1024 \
|
||||||
|
--preprocessing_num_workers 16 \
|
||||||
|
--per_device_train_batch_size 1 \
|
||||||
|
--per_device_eval_batch_size 1 \
|
||||||
|
--gradient_accumulation_steps 8 \
|
||||||
|
--lr_scheduler_type cosine \
|
||||||
|
--logging_steps 10 \
|
||||||
|
--warmup_steps 20 \
|
||||||
|
--save_steps 100 \
|
||||||
|
--eval_steps 100 \
|
||||||
|
--evaluation_strategy steps \
|
||||||
|
--load_best_model_at_end \
|
||||||
|
--learning_rate 5e-5 \
|
||||||
|
--num_train_epochs 3.0 \
|
||||||
|
--max_samples 3000 \
|
||||||
|
--val_size 0.1 \
|
||||||
|
--plot_loss \
|
||||||
|
--fp16
|
36
examples/extras/galore/galore_adamw.sh
Normal file
36
examples/extras/galore/galore_adamw.sh
Normal file
@ -0,0 +1,36 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
|
||||||
|
CUDA_VISIBLE_DEVICES=0 python ../../../src/train_bash.py \
|
||||||
|
--stage sft \
|
||||||
|
--do_train \
|
||||||
|
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
||||||
|
--dataset alpaca_gpt4_en,glaive_toolcall \
|
||||||
|
--dataset_dir ../../../data \
|
||||||
|
--template default \
|
||||||
|
--finetuning_type freeze \
|
||||||
|
--name_module_trainable mlp,self_attn \
|
||||||
|
--num_layer_trainable 8 \
|
||||||
|
--use_galore \
|
||||||
|
--galore_target mlp,self_attn \
|
||||||
|
--galore_rank 32 \
|
||||||
|
--output_dir ../../../saves/LLaMA2-7B/galore/sft \
|
||||||
|
--overwrite_cache \
|
||||||
|
--overwrite_output_dir \
|
||||||
|
--cutoff_len 1024 \
|
||||||
|
--preprocessing_num_workers 16 \
|
||||||
|
--per_device_train_batch_size 1 \
|
||||||
|
--per_device_eval_batch_size 1 \
|
||||||
|
--gradient_accumulation_steps 8 \
|
||||||
|
--lr_scheduler_type cosine \
|
||||||
|
--logging_steps 10 \
|
||||||
|
--warmup_steps 20 \
|
||||||
|
--save_steps 100 \
|
||||||
|
--eval_steps 100 \
|
||||||
|
--evaluation_strategy steps \
|
||||||
|
--load_best_model_at_end \
|
||||||
|
--learning_rate 5e-5 \
|
||||||
|
--num_train_epochs 3.0 \
|
||||||
|
--max_samples 3000 \
|
||||||
|
--val_size 0.1 \
|
||||||
|
--plot_loss \
|
||||||
|
--fp16
|
8
examples/extras/llama_pro/expand.sh
Normal file
8
examples/extras/llama_pro/expand.sh
Normal file
@ -0,0 +1,8 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
|
||||||
|
pip install -e ../../../.
|
||||||
|
|
||||||
|
python ../../../scripts/llama_pro.py \
|
||||||
|
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
||||||
|
--output_dir ../../../models/llama2-7b-pro \
|
||||||
|
--num_expand 8
|
33
examples/extras/llama_pro/sft.sh
Normal file
33
examples/extras/llama_pro/sft.sh
Normal file
@ -0,0 +1,33 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
|
||||||
|
CUDA_VISIBLE_DEVICES=0 python ../../../src/train_bash.py \
|
||||||
|
--stage sft \
|
||||||
|
--do_train \
|
||||||
|
--model_name_or_path ../../../models/llama2-7b-pro \
|
||||||
|
--dataset alpaca_gpt4_en,glaive_toolcall \
|
||||||
|
--dataset_dir ../../../data \
|
||||||
|
--template default \
|
||||||
|
--finetuning_type freeze \
|
||||||
|
--name_module_trainable all \
|
||||||
|
--num_layer_trainable 8 \
|
||||||
|
--output_dir ../../../saves/LLaMA2-7B-Pro/lora/sft \
|
||||||
|
--overwrite_cache \
|
||||||
|
--overwrite_output_dir \
|
||||||
|
--cutoff_len 1024 \
|
||||||
|
--preprocessing_num_workers 16 \
|
||||||
|
--per_device_train_batch_size 1 \
|
||||||
|
--per_device_eval_batch_size 1 \
|
||||||
|
--gradient_accumulation_steps 8 \
|
||||||
|
--lr_scheduler_type cosine \
|
||||||
|
--logging_steps 10 \
|
||||||
|
--warmup_steps 20 \
|
||||||
|
--save_steps 100 \
|
||||||
|
--eval_steps 100 \
|
||||||
|
--evaluation_strategy steps \
|
||||||
|
--load_best_model_at_end \
|
||||||
|
--learning_rate 5e-5 \
|
||||||
|
--num_train_epochs 3.0 \
|
||||||
|
--max_samples 3000 \
|
||||||
|
--val_size 0.1 \
|
||||||
|
--plot_loss \
|
||||||
|
--fp16
|
Loading…
x
Reference in New Issue
Block a user