mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-02 03:32:50 +08:00
add examples
Former-commit-id: e08045a9468986edf1e84001e6043db0ee2e5265
This commit is contained in:
parent
92c398166d
commit
c883542583
@ -72,7 +72,7 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
|
||||
|
||||
## Changelog
|
||||
|
||||
[24/08/30] We supported fine-tuning the **[Qwen2-VL](https://qwenlm.github.io/blog/qwen2-vl/)** models.
|
||||
[24/08/30] We support fine-tuning the **[Qwen2-VL](https://qwenlm.github.io/blog/qwen2-vl/)** models. Thank [@simonJJJ](https://github.com/simonJJJ)'s PR.
|
||||
|
||||
[24/08/27] We support **[Liger Kernel](https://github.com/linkedin/Liger-Kernel)**. Try `enable_liger_kernel: true` for efficient training.
|
||||
|
||||
@ -88,7 +88,7 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
|
||||
|
||||
[24/05/26] We supported **[SimPO](https://arxiv.org/abs/2405.14734)** algorithm for preference learning. See [examples](examples/README.md) for usage.
|
||||
|
||||
[24/05/20] We supported fine-tuning the **PaliGemma** series models. Note that the PaliGemma models are pre-trained models, you need to fine-tune them with `gemma` template for chat completion.
|
||||
[24/05/20] We supported fine-tuning the **PaliGemma** series models. Note that the PaliGemma models are pre-trained models, you need to fine-tune them with `paligemma` template for chat completion.
|
||||
|
||||
[24/05/18] We supported **[KTO](https://arxiv.org/abs/2402.01306)** algorithm for preference learning. See [examples](examples/README.md) for usage.
|
||||
|
||||
|
@ -73,7 +73,7 @@ https://github.com/user-attachments/assets/e6ce34b0-52d5-4f3e-a830-592106c4c272
|
||||
|
||||
## 更新日志
|
||||
|
||||
[24/08/30] 我们支持了 **[Qwen2-VL](https://qwenlm.github.io/blog/qwen2-vl/)** 模型的微调。
|
||||
[24/08/30] 我们支持了 **[Qwen2-VL](https://qwenlm.github.io/blog/qwen2-vl/)** 模型的微调。感谢 [@simonJJJ](https://github.com/simonJJJ) 的 PR。
|
||||
|
||||
[24/08/27] 我们支持了 **[Liger Kernel](https://github.com/linkedin/Liger-Kernel)**。请使用 `enable_liger_kernel: true` 来加速训练。
|
||||
|
||||
@ -89,7 +89,7 @@ https://github.com/user-attachments/assets/e6ce34b0-52d5-4f3e-a830-592106c4c272
|
||||
|
||||
[24/05/26] 我们支持了 **[SimPO](https://arxiv.org/abs/2405.14734)** 偏好对齐算法。详细用法请参照 [examples](examples/README_zh.md)。
|
||||
|
||||
[24/05/20] 我们支持了 **PaliGemma** 系列模型的微调。注意 PaliGemma 是预训练模型,你需要使用 `gemma` 模板进行微调使其获得对话能力。
|
||||
[24/05/20] 我们支持了 **PaliGemma** 系列模型的微调。注意 PaliGemma 是预训练模型,你需要使用 `paligemma` 模板进行微调使其获得对话能力。
|
||||
|
||||
[24/05/18] 我们支持了 **[KTO](https://arxiv.org/abs/2402.01306)** 偏好对齐算法。详细用法请参照 [examples](examples/README_zh.md)。
|
||||
|
||||
|
@ -134,6 +134,12 @@ FORCE_TORCHRUN=1 NNODES=2 RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llama
|
||||
FORCE_TORCHRUN=1 NNODES=2 RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft_ds3.yaml
|
||||
```
|
||||
|
||||
#### Multimodal Supervised Fine-Tuning
|
||||
|
||||
```bash
|
||||
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_full/qwen2vl_full_sft.yaml
|
||||
```
|
||||
|
||||
#### Batch Predicting and Computing BLEU and ROUGE Scores
|
||||
|
||||
```bash
|
||||
|
@ -134,6 +134,12 @@ FORCE_TORCHRUN=1 NNODES=2 RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llama
|
||||
FORCE_TORCHRUN=1 NNODES=2 RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft_ds3.yaml
|
||||
```
|
||||
|
||||
#### 多模态指令监督微调
|
||||
|
||||
```bash
|
||||
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_full/qwen2vl_full_sft.yaml
|
||||
```
|
||||
|
||||
#### 批量预测并计算 BLEU 和 ROUGE 分数
|
||||
|
||||
```bash
|
||||
|
@ -1,3 +1,3 @@
|
||||
model_name_or_path: llava-hf/llava-1.5-7b-hf
|
||||
template: vicuna
|
||||
template: llava
|
||||
visual_inputs: true
|
||||
|
3
examples/inference/qwen2_vl.yaml
Normal file
3
examples/inference/qwen2_vl.yaml
Normal file
@ -0,0 +1,3 @@
|
||||
model_name_or_path: Qwen/Qwen2-VL-7B-Instruct
|
||||
template: qwen2_vl
|
||||
visual_inputs: true
|
14
examples/merge_lora/qwen2vl_lora_sft.yaml
Normal file
14
examples/merge_lora/qwen2vl_lora_sft.yaml
Normal file
@ -0,0 +1,14 @@
|
||||
### Note: DO NOT use quantized model or quantization_bit when merging lora adapters
|
||||
|
||||
### model
|
||||
model_name_or_path: Qwen/Qwen2-VL-7B-Instruct
|
||||
adapter_name_or_path: saves/qwen2_vl-7b/lora/sft
|
||||
visual_inputs: true
|
||||
template: qwen2_vl
|
||||
finetuning_type: lora
|
||||
|
||||
### export
|
||||
export_dir: models/qwen2_vl_lora_sft
|
||||
export_size: 2
|
||||
export_device: cpu
|
||||
export_legacy_format: false
|
40
examples/train_full/qwen2vl_full_sft.yaml
Normal file
40
examples/train_full/qwen2vl_full_sft.yaml
Normal file
@ -0,0 +1,40 @@
|
||||
### model
|
||||
model_name_or_path: Qwen/Qwen2-VL-7B-Instruct
|
||||
visual_inputs: true
|
||||
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: full
|
||||
deepspeed: examples/deepspeed/ds_z3_config.json
|
||||
|
||||
### dataset
|
||||
dataset: mllm_demo
|
||||
template: qwen2_vl
|
||||
cutoff_len: 1024
|
||||
max_samples: 1000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
### output
|
||||
output_dir: saves/qwen2_vl-7b/full/sft
|
||||
logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
### train
|
||||
per_device_train_batch_size: 1
|
||||
gradient_accumulation_steps: 2
|
||||
learning_rate: 1.0e-5
|
||||
num_train_epochs: 3.0
|
||||
lr_scheduler_type: cosine
|
||||
warmup_ratio: 0.1
|
||||
bf16: true
|
||||
ddp_timeout: 180000000
|
||||
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 1
|
||||
eval_strategy: steps
|
||||
eval_steps: 500
|
@ -10,7 +10,7 @@ lora_target: all
|
||||
|
||||
### dataset
|
||||
dataset: mllm_demo
|
||||
template: vicuna
|
||||
template: llava
|
||||
cutoff_len: 1024
|
||||
max_samples: 1000
|
||||
overwrite_cache: true
|
||||
|
Loading…
x
Reference in New Issue
Block a user