mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-12-17 04:10:36 +08:00
merge data part to the text stream
This commit is contained in:
@@ -1,6 +1,12 @@
|
||||
from typing import TYPE_CHECKING, Any, Dict, Union
|
||||
|
||||
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, AutoProcessor, AutoModelForVision2Seq
|
||||
from transformers import (
|
||||
AutoConfig,
|
||||
AutoModelForCausalLM,
|
||||
AutoTokenizer,
|
||||
AutoProcessor,
|
||||
AutoModelForVision2Seq,
|
||||
)
|
||||
from trl import AutoModelForCausalLMWithValueHead
|
||||
|
||||
from ..extras.logging import get_logger
|
||||
@@ -62,10 +68,14 @@ def load_tokenizer(model_args: "ModelArguments") -> "PreTrainedTokenizer":
|
||||
dict(additional_special_tokens=model_args.new_special_tokens),
|
||||
replace_additional_special_tokens=False,
|
||||
)
|
||||
logger.info("Add {} to special tokens.".format(",".join(model_args.new_special_tokens)))
|
||||
logger.info(
|
||||
"Add {} to special tokens.".format(",".join(model_args.new_special_tokens))
|
||||
)
|
||||
if num_added_tokens > 0 and not model_args.resize_vocab:
|
||||
model_args.resize_vocab = True
|
||||
logger.warning("New tokens have been added, changed `resize_vocab` to True.")
|
||||
logger.warning(
|
||||
"New tokens have been added, changed `resize_vocab` to True."
|
||||
)
|
||||
|
||||
patch_tokenizer(tokenizer)
|
||||
return tokenizer
|
||||
@@ -111,7 +121,7 @@ def load_model(
|
||||
finetuning_args: "FinetuningArguments",
|
||||
is_trainable: bool = False,
|
||||
add_valuehead: bool = False,
|
||||
) -> Union["PreTrainedModel", "AutoModelForVision2Seq"]:
|
||||
) -> Union["PreTrainedModel"]:
|
||||
r"""
|
||||
Loads pretrained model.
|
||||
"""
|
||||
@@ -170,8 +180,10 @@ def load_model(
|
||||
|
||||
trainable_params, all_param = count_parameters(model)
|
||||
if is_trainable:
|
||||
param_stats = "trainable params: {:d} || all params: {:d} || trainable%: {:.4f}".format(
|
||||
trainable_params, all_param, 100 * trainable_params / all_param
|
||||
param_stats = (
|
||||
"trainable params: {:d} || all params: {:d} || trainable%: {:.4f}".format(
|
||||
trainable_params, all_param, 100 * trainable_params / all_param
|
||||
)
|
||||
)
|
||||
else:
|
||||
param_stats = "all params: {:d}".format(all_param)
|
||||
@@ -185,4 +197,4 @@ def load_model(
|
||||
)
|
||||
)
|
||||
|
||||
return model
|
||||
return model
|
||||
|
||||
Reference in New Issue
Block a user